Sanitary Sewer System 2016 Annual Report

Town of Oliver

April 2017

Project No. 306-088-004

ENGINEERING ■ PLANNING ■ URBAN DESIGN

201-2079 Falcon Rd | Kamloops BC | V2C 4J2 | www.true.bc.ca | tel 250.828.0881 | fax 250.828.0717

Distribution List

# of Hard Copies	PDF Required	Association / Company Name		
0	1	Ministry of Environment, Penticton, BC		
2	1	Town of Oliver		
2	1	TRUE Consulting, Kamloops, BC		

Revision Log

Revision #	Revised by	Date	Issue / Revision Description

Report Submission

Report Prepared By:

Report Reviewed By:

Natalie Alteen, EIT

Project Engineer

Terry Underwood, P. Eng Project Engineer

R:\Clients\300-399\306\306-088-004\05 Reports\2016 Sanitary Sewer Annual Report\306-088-004 - Sanitary Sewer System - 2016 Annual Report - April 2017.docx

Table of Contents

1.0	Ο	pera	tional Data	1
1.1		Influ	ent	1
1	.1.1	1	Influent Flow Data (OC 7.1.2 and 7.2.4.7)	1
1	.1.2	2	Influent Wastewater Sampling (OC 6.1)	2
1.2		Was	stewater Treatment (OC 6.2 and 7.1.2)	3
1.3		Wint	ter Effluent Storage Reservoir (OC 6.5)	3
1.4		Rec	laimed Water Quantities and Quality1	1
1	.4.′	1	Irrigation Volumes (OC 7.2.4.2 and 6.4)1	1
1	.4.2	2	Hydraulic Balance (OC 7.2.4.1)14	4
1	.4.3	3	Irrigation Water Quality Data (OC 6.3)14	4
1.5		Sum	nmary of 2016 Operational Data16	3
2.0	Sı	uppl	emental Information1	7
2.1		Ope	erator Certification (OC 3.3)1	7
2.2		Cap	ital Improvements1	7
2.3		Influ	ient Waste Bylaw (OC 3.6 and 7.2.4.4)1	7
2.4		Slud	lge Management Plan18	3
2.5		Grou	undwater Monitoring Plan (OC 6.8)18	3
2	2.5.1	1	Airport Monitoring Wells No. 1 to 3	3
2	2.5.2	2	Fairview Monitoring Wells No. 1 to 7	2
Appe	ndi	x A:	Flow and Storage Reservoir Level Data	
Appe	ndi	x B:	Influent and Effluent Sampling Data	
Appe	ndi	ix C:	Seasonal Precipitation Data	
Appe	ndi	ix D:	Sludge Monitoring (Quality) Data	
Appe	ndi	x E:	Groundwater Monitoring Data	
Appe	ndi	x F:	Operational Certificate for PE 13717	

Appendix G: Effluent Storage Reservoir - Volume Calibrarion Curve

List of Tables

. 1
. 3
. 6
. 7
. 9
.11
.12
.14
.15
.19
.21
.23
.24

List of Figures

Figure 1-1: Total Annual Influent Sewage Flows for 1996 to 2016	2
Figure 1-2: Overall Plan - Reclaimed Water Supply System and Irrigation	4
Figure 1-3: Aerated Lagoon Treatment System	5
Figure 1-4: Effluent Storage Reservoir Levels for 2007 to 2016	10
Figure 1-5: Average Seasonal Sodium Concentrations for 2003 to 2016	16
Figure 2-1: Airport Area Groundwater Monitoring Well Site Plan	20
Figure 2-2: Groundwater Monitoring Well Site Plan	25

1.0 Operational Data

Paragraphs following summarize the operational data for the Town of Oliver Sanitary Sewer System for 2016. The operational report for 2016 is formatted in a "source" to "final disposal" format. Each section also includes a reference to the appropriate sections of the Operational Certificate (OC) for the system. Appendix F of this report contains a complete copy of the Operational Certificate for PE 13717 issued by the Ministry of Environment. To assist the reader in assessing the system operational data, the following drawings are included:

Figure 1-2: Overall Plan - Reclaimed Water Supply System and Irrigation

Figure 1-3: Aerated Lagoon Treatment System

TABLE 1-1: ANNUAL TOTAL AND AVERAGE DAILY INFLUENT FLOW DATA

1.1 Influent

1.1.1 Influent Flow Data (OC 7.1.2 and 7.2.4.7)

Daily flow data for wastewater volumes pumped from the equalization basin to treatment are presented monthly in Appendix A. The total volume pumped to the aerated lagoons in 2016 was 639,794 m³, which equates to an average daily flow of 1,753 m³/day. For comparison, total influent flows for the period 1996 to 2016 are summarized in Table 1-1 and Figure 1-1 as follows:

N e en	Total Influent	Average Daily	
rear	Volume (m ³)	Flow (m ³ /d)	
1996	654,361	1,788	
1997	682,480	1,870	
1998	666,322	1,826	
1999	688,193	1,885	
2000	702,688	1,920	
2001	678,052	1,858	
2002	726,354	1,990	
2003	751,139	2,058	
2004	766,048	2,093	
2005	783,947	2,148	
2006	829,413	2.272	

	Total Influent	Average Daily	
Year	Volume (m ³)	Flow (m ³ /d)	
2007	823,011	2,255	
2008	777,154	2,123	
2009	758,308	2,078	
2010	701,475	1,922	
2011	693,045	1,899	
2012	658,002	1,798	
2013	697,377	1,911	
2014	634,649	1,739	
2015	679,542	1,862	
2016	639,794	1,753	

FIGURE 1-1: TOTAL ANNUAL INFLUENT SEWAGE FLOWS FOR 1996 TO 2016

The total influent flow for 2016 was 639,794 m³, which is a decrease of 39,750 m³ (6%) compared to 2015.

1.1.2 Influent Wastewater Sampling (OC 6.1)

Influent sampling data for phosphorus (dissolved and total) are presented in Appendix B. Total phosphorus is a measure of dissolved phosphate and insoluble phosphorus. The average result in 2016 for total phosphorous and orthophosphate was 3.26 mg/L and 0.79 mg/L, respectively. The 2016 average concentration for total phosphorous and orthophosphate were lower than the historical average.

TABLE 1-2: INFLUENT SEWAGE QUALITY DATA

Year	Date	Total Phosphorus (mg/L)	Ortho Phosphate (mg/L)
1006	Mar. 22	5.44	
1990	Sep. 12	5.18	
1997	Mar. 19	5.87	
1009	Mar. 18	5.6	
1990	Sep. 9	5.89	
1000	Mar. 11	6.66	
1999	Sep. 23	4.89	
2000	Mar. 23	6.48	4.69
2000	Sep. 28	8.67	3.04
2001	Mar. 22	4.57	2.3
2001	Sep. 19	4.13	1.88
2002	Mar. 19	4.53	3.84
2002	Sep. 10	4.52	2.55
2003	Mar. 10	3.78	3.78
2003	Sep. 30	4.48	4.38
2004	Mar. 16	5.23	4.76
2004	Sep. 14	5.15	3.75
2005	Mar. 22	5.24	4.63
2005	Oct. 5	6.74	5.58
2006	Sep. 14	7.05	5.96
2007	Mar. 13	5.03	6.43*
2007	Sep. 11	6.03	5.03
2008	Sep. 3	7.44	3.3
2000	Mar. 5	8.18	3.84
2003	Sep. 1	5.31	1.38
2010	Mar. 9	4.26	0.558
2010	Sep. 2	3.36	2.16
2011	Mar. 8	4.9	0.316
2011	Sep. 8	11	0.859
2012	Mar. 1	6.16	2.23
2012	Sep. 11	7.76	3.72
2013	Mar. 7	5.75	2.57
2010	Sep. 11	4.62	1.89
2014	Mar. 5	4.28	0.82
2014	Sep. 17	3.82	not tested
2015	Mar. 11	5.36	2.66
2013	Sep. 16	4.55	2.96
	Mar. 7	4.17	1.21
2016	Sep. 6	2.35	0.36*
Average for Per	iod of Record	5.50	2.99

* Suspected error

PUTURE 3 CELL 0 PPANTON SELL 1 679-ASS CELL 2 679-ASS UP DOWN UP DOWN UP UP PRATING LIVEL OPENATING LIVEL N/A OPEN OPENATING LIVEL N/A CLORED CLORED CLORED CLORED CLORED CLORED CLORED CLORED CLORED CLORED CLORED CLORED CLORED CLORED COPEN CLORED CLORED OPEN CLORED CLORED OPEN CLORED CLORED OPEN	
_C	
	9
	TOWN OF OLIVER
	TREATMENT SYSTEM AERATION SYSTEM LAYOUT AND INTER CELL PIPING

1.2 Wastewater Treatment (OC 6.2 and 7.1.2)

Effluent sampling results from the aerated lagoon system (Cell No. 3) prior to storage are tabulated in Table 1-3. As seen, effluent quality complies with OC requirements that BOD_5 does not exceed 45 mg/L and TSS does not exceed 60 mg/L.

Date	BOD₅ (mg/L)	TSS (mg/L)	
OC Limits	45	60	
Jan-06 (2016)	23	23	
Feb-03 (2016)	34	24	
Mar-07 (2016)	36	16	
Apr-06 (2016)	9	12	
May-05 (2016)	17	7	
Jun-08 (2016)	26	13	
Jul-06 (2016)	9	10	
Aug-09 (2016)	7	16	
Sep-06 (2016)	21	18	
Oct-06 (2016)	23	9	
Nov-08 (2016)	42	17	
Dec-06 (2016)	28	13	

TABLE 1-3:	NO. 3 E	- BOD	AND TSS

Sampling data for nitrogen and phosphorus at the outlet of Cell No. 3 are contained in Appendix B. The 2016 results for nitrogen for a sample taken on September 13, 2016 with comparison to historical data are presented in Table 1-4.

	Se	March		
Year	Total Nitrogen	Ammonia	Nitrate	Total Nitrogen
	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1997	9.34	0.006	7.7	20.7
1998	10.8	0.005	8.89	25.1
1999	11.3	0.46	8.31	23.9
2000	No Data	0.48	9.77	29.1
2001	34.3	4.37	7.92	31.3
2002	17.7	0.013	16.3	23.6
2003	No Data	0.71	3.9	26.9
2004	9.8	8.46	0.29	17.2
2005	26.4	14.2	No Data	36.4
2006	12.1	0.78	5.97	No Data
2007	20	13.2	0.92	25.7
2008	10	9.55	0.297	24.1
2009	17	14	1	No Data
2010	16.3	8.44	3.6	27.8
2011	26	13.7	3.27	33.5
2012	5.28	1.95	2.17	32.2
2013	10.10	0.289	9.43	43.7
2014	No Data	No Data	No Data	32.8
2015	19.10	17.6	0.966	No Data
2016	12.80	1.82	5.33	33.2

TABLE 1-4: CELL NO. 3 EFFLUENT - NITROGEN

The acceptable range for total nitrogen in domestic wastewater is 20 to 50 mg/L, with sampling to occur semi-annually. Total nitrogen was within range for the September/October and March sampling period.

Historically, from 1997 to 2002, a significant proportion of ammonia and nitrogen was nitrified through the Town's aerated lagoon system. From 2003 to 2015, the Town accepted wastewater influent from Vincor, resulting in modest levels of nitrification. In January 2012, Vincor implemented a pre-treatment system resulting in a 90%+ reduction in BOD. This resulted in reduced loadings and allowed for increased nitrification, which is indicated by the nitrogen removal data in September 2012 and September 2013. As of July 01, 2015, Vincor has been connected to the Osoyoos Indian Band Wastewater Treatment Plant.

1.3 Winter Effluent Storage Reservoir (OC 6.5)

Storage reservoir level data, largely daily information, are presented in Appendix A. All elevations given are relative to geodetic datum. The elevation data has been converted to total volume in storage above the minimum 60-day storage level. The calibration curve is attached in Appendix G. The operation of the storage reservoir in 2016 is summarized in Table 1-5, on page 9. This includes a comparative summary from 1998 to 2016.

TABLE 1-5: EFFLUENT STORAGE RESERVOIR LEVEL DATA

Year	Date	Elevation (m)	Volume (m ³)
1001	Max 06-Apr-98	445 34	340.000
1998	Min 13-Oct-98	439.8	27 000
	End 29-Dec-98	400.0	116,000
	Max 11-Apr-99	444 44	277.000
1999	Min 25-Oct-99	440 915	71 000
1000	End 29-Dec-99	442.88	172 000
	Max 10-Apr-00	445.07	321,000
2000	Min 16-Oct-00	441.83	114 000
2000	End 28-Dec-00	443 33	202.000
	Max 01-Apr-01	444.48	282,000
2001	Min 15 Oct 01	444.40	202,000
2001	End 24 Doc 01	439.33	9,000
	Max 22 Apr 02	441.19	228,000
2002	Min 16 Son 02	443.73	220,000
2002	Find 22 Dec 02	440.05	34,000
	Enu 23-Dec-02	441.33	90,000
2002	Min 22 Son 02	443.90	240,000
2003	IVIII. 22-Sep-03	440.00	39,000
	End 29-Dec-03	443.40	213,000
2004	Max. 19-Apr-04	445.77	377,000
2004	Win. 06-Dec-04	444.22	260,500
	End 31-Dec-04	444.35	272,000
2005	Max. 18-Apr-05	446.4	390,000
2005	Min. 24-Oct-05	441.18	81,000
	End 27-Dec-05	443.38	205,000
	Max. 24-Apr-06	446.2	380,000
2006	Min. 30-Oct-06	440.81	67,000
	End 31-Dec-06	443.24	199,000
	Max. 30-Mar-07	446	370,000
2007	Min. 23-Sep-07	440.34	40,000
	End 31-Dec-07	442.76	170,000
	Max. 13-Apr-08	445.28	339,000
2008	Min. 29-Oct-08	440.39	49,000
	End 31-Dec-08	442.7	167,000
	Max. 14-Apr-09	445.45	344,000
2009	Min. 11-Oct-09	440.72	61,000
	End 31-Dec-09	443.24	198,000
	Max. 06-Apr-10	445.64	352,000
2010	Min. 21-Oct-10	440.95	71,000
	End 31-Dec-10	443.64	222,000
	Max. 11-Apr-11	445.75	357,000
2011	Min. 26-Sep-11	441.09	76,000
	End 31-Dec-11	443.24	197,000
	Max. 02-May-12	445.36	338,000
2012	Min. 10-Oct-12	440.99	72,000
	End 31-Dec-12	443.46	211,000
	Max. 25-Apr-13	445.52	355,000
2013	Min. 21-Aug-13	441.67	106,000
	End 31-Dec-13	444.56	284,000
	Max. 31-Mar-14	446.06	374,000
2014	Min. 15-Sep-14	441.39	92,000
	End 29-Dec-14	443.65	223,000
	Max. 07-Apr-15	445.62	351,000
2015	Min. 07-Oct-15	441.52	101,000
	End 04-Jan-16	443.5	214,000
	Max. 04-Apr-16	445.47	343,000
2016	Min. 19-Sep-16	441.60	105,000
	End 19-Dec-16	444.02	247,000

Winter effluent storage reservoir year-end, maximum and minimum operating elevations for the period 2008 to 2016 are illustrated graphically in Figure 1-4. As seen, the operation of the reservoir over the last 9 years has been very consistent. Referring to Figure 1-4:

- The maximum elevation for 2016 (445.47 m on April 4, 2016) is comparable to the seasonal maximums for 2008 to 2015 inclusive.
- The 2016-year end volume in storage of 247,000 m³ is consistent with previous years.

FIGURE 1-4: EFFLUENT STORAGE RESERVOIR LEVELS FOR 2007 TO 2016

1.4 Reclaimed Water Quantities and Quality

1.4.1 Irrigation Volumes (OC 7.2.4.2 and 6.4)

Total reclaimed water usage is measured by a flow meter located at the booster station adjacent to the reclaimed water storage reservoir. Meters are also in place at the Cemetery, Linear park, Airport, Public Works Yard, Alonso property, secondary school and Huggins property for the purposes of measuring total reclaimed water use. This water is used for irrigation at each of these sites. There is no meter on the irrigation service to the Fairview Mountain Golf Course. Usage by the Fairview Mountain Golf Course is therefore calculated as the total annual irrigation volume less all other metered usage. The following table summarizes reclaimed irrigation water usage by the seven users.

Location	2011	2012	2013	2014	2015	2016
Fairview Mt. Golf						
Course	290,036	297,875	248,521	316,368	346,520	322,048
Cemetery	16,339	14,607	19,160	15,996	14,354	14,843
Gala Street ³ Linear						
Park	6,232	6,622	8,051	8,749	7,647	8,360
Airport	147,688	153,841	185,687	124,892	115,743	98,511
Public Works Yard	5,164	6,409	7,086	7,393	7,380	8,095
Alonso ²	1,671	7,015	6,715	3,893	3,851	2,364
Huggins ²	3,787	2,872	1,290		8,554	0
Southern Okanagan						
Secondary School				4,874	0	0
Total Use	470,917	489,241	476,510	482,164	504,049	454,221

TABLE 1-6: ANNUAL RECLAIMED WATER USE BY CUSTOMER

¹ Cemetery disconnected from Reclaimed Water Supply System on September 20, 2006 due to available quantity concerns.

² Reclaimed water usage is unknown prior to 2010 since water meters were not installed on the Alonso and

Huggins reclaimed water services until fall of 2009

³ Gala Street was previously described as 103rd Street

From flow data contained in Appendix A, reclaimed water quantities for each "user" are described as follows:

(1)

Lot 723, Plan 2361 - Fairview Mountain Golf Course

Total Usage Crop Type Irrigated Area Irrigation Application Rate* Irrigation Period 322,048 Turf and rough areas 45 ha 0.72 m April to October

* Does not include seasonal precipitation

Over the years of record, reclaimed water use on the Fairview Mountain Golf Course has varied significantly on a year to year basis. From Appendix C, Table 1-7 has been prepared adding seasonal precipitation to reclaimed water usage to derive an annual total. The tabulation shows that the sum of seasonal precipitation and reclaimed water for 2016 is 0.90 m applied. This is consistent with 2015 usage.

The decrease in application rate since 2009 is partially due to the metering of the Alonso and Huggins properties, recognizing the water use for the golf course is approximated as the total annual irrigation volume less all other metered usage. Prior to 2010, Huggins and Alonso usage was assumed to be modest and was included in the estimated volume supplied to the Fairview Mountain Golf Course.

Year	Total Usage	Application	Seasonal Precipitation	Total (m)
	(m)	Nate (III)	(mm)	
1995	413,000	0.92	124	1.04
1996	426,000	0.95	216	1.16
1997	345,000	0.77	324	1.09
1998	430,580	0.96	214	1.17
1999	342,424	0.76	162	0.92
2000	362,353	0.81	126	0.93
2001	376,353	0.84	178	1.01
2002	433,620	0.96	83	1.05
2003	401,022	0.89	94	0.98
2004	329,575	0.73	231	0.96
2005	373,292	0.83	131	0.96
2006	362,055	0.80	144	0.95
2007	414,225	0.92	88	1.01
2008	417,228	0.93	74	1.00
2009	358,375	0.80	161	0.96
2010	274,877	0.61	221	0.83
2011	290,036	0.64	151	0.80
2012	297,875	0.66	223	0.88
2013	248,521	0.55	180	0.73
2014	316,367	0.70	175	0.88
2015	346,520	0.77	136	0.91
2016	332,048	0.74	166	0.90

TABLE 1-7: ANNUAL TOTAL APPLICATION RATE AT THE FAIRVIEW MOUNTAIN GOLF COURSE

(2)

Lot A, Plan 24065 – Oliver Cemetery

Total Usage Crop Type Irrigated Area Irrigation Application Rate Irrigation Period 14,843 m³ Lawn, trees & shrubs 2.3 ha 0.65 m April to October

(3) Gala Street Linear Park

Total Usage	8,360 m ³
Сгор Туре	Lawn & trees
Irrigated Area	0.8 ha
Irrigation Application Rate	1.05 m
Irrigation Period	April to October

(4) Lot A, Plan 38137 – Oliver Airport

98,511 m ³
Forage crops
12.6 ha
0.78 m
April to October

Reclaimed water use on the Airport Site in 2016 was less than 2015. This decreased volume is attributed to a reduction in the area used for forage crop production.

(5) Lot A, Plan 33094 – Oliver Public Works Yard

Total Usage	8,095 m ³
Crop Type	Lawn, landscaping, composting piles
Irrigated Area	0.6 ha
Irrigation Application Rate	N/A*
Irrigation Period	April to October

The principal use of reclaimed water at the public works yard is for the composting operation. Because composting use is not separately metered, application rates for the lawn and landscaping areas cannot be calculated.

(6) Lot A, Plan 37929 – Alonso (former Moir)

Total Usage	2,364 m ³
Crop Type	Vineyard
Irrigated Area	approximately 1.0 ha
Irrigation Application Rate	0.24 m
Irrigation Period	April to October

A meter was installed on the Alonso reclaimed water service in the fall of 2009. The service was originally constructed in the mid-1990s to Lot A Plan 37929 to enable the property owner to maintain a "green belt" around his home as a fire protection measure. Around 2005, the property owner planted a vineyard with irrigation from the Town's reclaimed water system and in 2009 the vineyard was expanded.

(7) Southern Okanagan Secondary School Irrigation

0
Lawn and Trees
approximately 0.7 ha
0
April to October

The School District did not use any reclaimed water in 2016.

1.4.2 Hydraulic Balance (OC 7.2.4.1)

Overall system hydraulic balances for the period January 1 to December 31 for the years 2009 to 2016 are summarized as follows:

	2009	2010	2011	2012	2013	2014	2015	2016
Volume in Storage on Jan. 1	167,000	200,000	223,000	197,000	211,000	284,000	223,000	214,000
(+) Total Influent	758,308	701,475	693,045	658,002	697,377	634,649	679,500	639,793
(-)Effluent Irrigation	520,530	519,803	470,917	489,241	476,510	482,164	504,049	454,221
(-)Rapid Infiltration	0	0	0	0	0	0	0	0
(-)Unaccounted Losses	206,778	159,672	248,128	154,761	147,867	213,485	184,451	152,572
Net Storage at Year-End								
(m ³)	198,000	222,000	197,000	211,000	284,000	223,000	214,000	247,000

TABLE 1-8: HYDRAULIC BALANCE DATA FOR 2009-2016

In the above tabulation, unaccounted losses include evaporation losses from the treatment lagoons and storage reservoir, seepage losses from both the treatment and storage cells, and flow meter inaccuracies. Unaccounted losses of 152,572 m³ for 2016 are consistent with previous years.

1.4.3 Irrigation Water Quality Data (OC 6.3)

Effluent quality data for reclaimed water prior to irrigation is presented in Appendix B. Item 6.3 of the OC requires a maximum limit of 2.2 MPN/100mL for fecal coliforms. Results for the 2016 irrigation season are consistent with the OC requirements.

To provide background data to assist with future soil assessment studies, the Town of Oliver continued with an expanded monitoring programme to include phosphorus, nitrogen, chloride and sodium through 2016. Data for these parameters are tabulated in Appendix B.

Seasonal (April to October) averages for total phosphorus, total nitrogen and sodium sampled at the Chlorine Contact Basin for the period 2000 to 2016 are summarized as follows:

TABLE 1-9: IRRIGATION WATER QUALITY DATA

Year	Seasonal Average Total Phosphorus (mg/L)	Seasonal Average Total Nitrogen (mg/L)	Seasonal Average Sodium (mg/L)
2000	2.92	12.5	
2001	2.46	14.1	
2002	2.75	13.4	
2003	1.2	6.8	114.3
2004	1.36	9.3	103.5
2005	2.87	11.9	94.4
2006	2.4	11.6	84.4
2007	3.91	11.9	84.2
2008	3.93	14.2	89.5
2009	3.27	12.1	93.7
2010	3.61	13.8	97.1
2011	3.88	16.9	111.2
2012	4.01	14.3	114.6
2013	4.77	19.4	112.6
2014	5.90	26.6	120.6
2015	4.04	20.3	112.3
2016	4.0	14.9	107.0

As seen, the average total phosphorus levels in 2016 are consistent with values from previous years. The total nitrogen levels decreased compared to 2014 and 2015, to more closely resemble pre-2014 readings. In 2016, sodium concentrations were consistent with the concentrations between 2011 to 2015. Concerns regarding elevated sodium concentrations in the reclaimed water have been expressed by the Fairview Mountain Golf Course. Average seasonal sodium concentrations for the period 2003 to 2016 are illustrated graphically in Figure 1-5.

FIGURE 1-5: AVERAGE SEASONAL SODIUM CONCENTRATIONS FOR 2003 TO 2016

1.5 Summary of 2016 Operational Data

Operation of the Town of Oliver's wastewater collection, treatment and reclaimed water system for 2016 is summarized as follows:

- Total influent quantities were 639,800 m³, a decrease of 23,400 m³ or 4% as compared to 2015. The 2016 annual influent quantity is comparable to 2014.
- Wastewater effluent quality from the Town's aerated lagoons in 2016 complied with the OC requirements for BOD₅ and TSS.
- Reclaimed water quality prior to irrigation complied with the OC requirements for bacteriological quality.

2.0 Supplemental Information

2.1 Operator Certification (OC 3.3)

In compliance with OC Section 3.3 operator certification is summarized as follows:

Arvid Bensler	Wastewater Treatment Level I
Darren Bjornson	Wastewater Collection Level II
Ryan Seiling	Wastewater Treatment Level I
	Wastewater Collection Level I
Martin Schori	Wastewater Treatment Level I
	Wastewater Collection Level I
Adrian Zandvliet	Wastewater Treatment Level I
	Wastewater Collection Level I

2.2 Capital Improvements

In 2016, the grit channel liner was replaced and a sewer condition assessment (Phase 1) was completed. This pipe assessment was accomplished using pipe inspection cameras and allowed for a conditions assessment of older infrastructure.

2.3 Influent Waste Bylaw (OC 3.6 and 7.2.4.4)

Sanitary Sewer System Use Bylaw No. 547 is included in its entirety in Appendix 5 of the 1997 Annual Report. In January 2002, the Town of Oliver received an application from Vincor requesting approval to connect its winery located on the Osoyoos Indian Reserve, north of the Town boundaries, to the Town's sewerage system. This application relates to both process water and normal domestic sewage and was approved by the Town.

Vincor was connected to the Town's sewerage system from October 2002 to July 01, 2015. During this period, Vincor's wastewater was sampled by the Town at least twice per month to confirm compliance with the terms and conditions of the connection agreement and for invoicing purposes. There was no influent received from Vincor in 2016.

Section 3.1 of the OC specifies that the Town has Operation and Maintenance Manuals on file for inspection by the Regional Waste Manager.

2.4 Sludge Management Plan

Consistent with historical practices, the Town undertook sampling of the sludge in Aerated Lagoon Cell No. 2 (presented in Appendix D).

2.5 Groundwater Monitoring Plan (OC 6.8)

The Town of Oliver has approved groundwater monitoring plans for the airport and Fairview Mountain Golf Course sites, the two largest users of reclaimed water. Groundwater table measurements and sampling data are contained in Appendix E and are discussed in paragraphs following.

2.5.1 Airport Monitoring Wells No. 1 to 3

There is a total of three monitoring wells at the airport site that are all down gradient from the reclaimed water use area (refer to Figure 2-1). Groundwater level data and water quality data from Appendix E are summarized as follows in Table 2-1:

Monitoring Well	Year	Minimum Depth (m)	Maximum Depth (m)	Average Depth* (m)	Range of Depth (m)
	2007	9.59	10.68	10.18	1.09
	2008	10.52	10.79	10.69	0.27
	2009	10.77	11.40	10.93	0.63
	2010	10.31	11.03	10.76	0.72
Air Cadet	2011	10.33	10.80	10.55	0.47
(Well #1)	2012	9.84	10.78	10.50	0.94
	2013	9.78	10.44	10.11	0.66
	2014	9.98	10.58	10.33	0.60
	2015	10.01	10.51	10.28	0.50
	2016	10.21	10.5	10.36	0.29
	2007	5.89	6.40	6.10	0.51
	2008	6.11	6.38	6.25	0.27
	2009	5.83	6.54	6.20	0.71
	2010	5.69	6.35	6.04	0.66
Rodeo Grounds	2011	5.84	6.34	6.09	0.50
(Well #2)	2012	5.84	6.54	6.20	0.70
	2013	5.62	6.24	5.91	0.62
	2014	5.84	6.27	6.08	0.43
	2015	5.69	6.66	6.08	0.97
	2016	5.66	5.97	5.82	0.31
	2007	1.52	2.19	1.81	0.67
	2008	1.50	2.34	1.78	0.84
	2009	1.47	2.05	1.77	0.58
	2010	1.45	1.64	1.54	0.19
91A St.	2011	1.31	1.55	1.46	0.24
(Well #3)	2012	1.38	1.54	1.46	0.16
	2013	1.20	1.39	1.27	0.19
	2014	1.11	1.65	1.37	0.54
	2015	1.21	1.66	1.41	0.45
	2016	1.13	1.43	1.28	0.30

TABLE 2-1: SUMMARY OF GROUNDWATER DEPTHS FOR AIRPORT MONITORING WELLS

*Depth indicates the measurement from the top of casing to the water level.

Overall, the average groundwater table elevation in the Air Cadet well was greater than that measured in 2015. The Rodeo Grounds and 91A Street's average depths were less than observed in 2015. All three well locations had water depths within the historical range.

Sampling of the three monitoring wells in the vicinity of and at the airport was initiated by the Town in September 2007. The following table summarizes the groundwater quality data for the three airport area monitoring wells.

Monitoring Well	Sample Date	Chloride	Ammonia	Nitrate/Nitrite	Total Hardness	Sodium
	Sep-19-2007	24.6	< 0.02	7.71	535	13.9
	Apr-09-2008	9.97	0.09	2.84	773	24.1
	Sep-11-2008	12.6	0.04	1.3	817	21.7
	Apr. 07, 2009	11.1	0.02	0.7	1220	27.3
	Sep-18-2009	9.23	0.02	2.3	437	17.7
	May-19-2010	13.5	0.06	12.7		
	Sep-07-2010	13.8	< 0.02	12	383	22.1
	Apr-28-2011	17.5	0.15	12.1	217	9.33
Air Cadet	Sep-28-2011	12.7	0.12	7.87	400	18.4
(Well #1)	Apr-24-2012	16.4	0.04	7.59	464	20.0
(Oct-16-2012		0.034	9.7	481	19.8
	Apr-09-2013		0.034	10.1	384	18.5
	Sep-09-2013		< 0.020	20.2	383	17
	Apr-16-2014		0.027	21.6	542	18.1
	Sep-04-2014	19.8	< 0.020	23.9	402	19.5
	Apr-14-2015	20.7	0.102	24.4	485	20.5
	Sep-16-2015	15.9	0.079	20.5	590	23.5
	- Cont 12 2010	-	-	-	-	-
	Sept-13-2016	0.24	0.032	10	2330	19.1
	Apr-00-2007	9.24 7.76	< 0.02	0.25	1600	<u> </u>
	Api-03-2000	127	0.03	0.0	800	23.7
	Sep-11-2006	10.2	0.00	1.14	090	21.7
	Apr. 07, 2009	0.01	< 0.02	0.26	677	10.2
	Sep-18-2009	9.01	< 0.02	0.30	0/7	19.1
	Nay-19-2010	9.09	0.04	0.08	696	22.2
	Apr 29 2011	0.95	< 0.02	0.20	521	0.12
	Api-20-2011	0.22	0.03	0.05	401	9.13
Rodeo Grounds	Sep-20-2011	9.55	0.02	0.749	572	17.4
(Well #2)	Apr-24-2012	10.0	0.01	0.749	661	17.4
	Δpr-09-2012		0.021	0.203	384	18.4
	Sen-09-2013		0.023	0.121	889	18
	Apr-16-2014		0.024	0.123	392	15.9
	Sep-04-2014	8.47	0.02	0.584	370	15.9
	Apr-14-2015	9.05	0.094	0.865	494	18.5
	Sep-16-2015	6.56	0.037	0.3	1120	31.6
	-	-	-	-	-	-
	Sept-13-2016	6.54	0.032	0.628	1110	19.2
	Sep-19-2007	7.46	0.06	0.05	7340*	15.1
	Apr-09-2008	10	0.03	0.05	972	27.5
	Sep-11-2008	14.9	0.12	0.04	5010	38.4
	Apr-07-2009	11.8	0.02	0.026	1270	31.6
	Sep-18-2009	9.39	0.11	< 0.02	1070	24.6
	May-19-2010	12.2	0.06	< 0.02		
	Sep-07-2010	15.1	0.35	0.35	2300	37.7
	Apr-28-2011	23.1	0.04	0.44	633	15.3
91A St.	Sep-28-2011	18.5	0.1	0.32	1160	36.8
(Well #3)	Apr-24-2012	18.4	0.09	0.270	1470	36.9
(·····,	Uct-16-2012		0.04	0.033	924	31.6
	Apr-09-2013		0.049	0.074	834	23.9
	Sep-09-2013		0.07	0.101	1430	24.6
	Apr-16-2014		0.028	0.058	399	16.9
	Sep-04-2014	125	0.023	0.032	438	21.8
	Apr-14-2015	8.99	0.086	0.106	631	18.9
	Sep-16-2015	7.59	0.047	0.035	496	18.5
	-	-	-	-	-	-
	Sept-13-2016	8.01	0.032	0.214	389	17.2

TABLE 2-2: SUMMARY OF WATER QUALITY DATA FOR THE AIRPORT MONITORING WELLS

Related to the water quality data for the airport area groundwater monitoring wells:

- The three wells have varying hardness concentrations consistent with aquifers that have modest recharge and low transmissivity. These wells do not have suitable water quality for domestic purposes, given that the major aquifers used by the Town for water supply have relatively consistent hardness concentrations of 300 to 400 mg/L.
- The influence of reclaimed water on groundwater quality is generally reflected in ammonia and/or nitrate concentrations in the monitoring wells. Since 2007, the three wells have not had any samples with ammonia concentrations significantly above background.
- Since 2015, there has been a decrease in nitrate/nitrite concentrations in the Air Cadet well of 5.5 mg/L. It should be noted that background concentrations for nitrate in water wells influenced by the agricultural industry are typically in the range of 6 to 10 mg/L. Average concentrations for the Air Cadet well are higher than this, suggesting nitrate accumulation in the groundwater and the influence of reclaimed water. The nitrate concentrations downgradient of this well at 91A St. are well below this range, with an average concentration of 0.089 mg/L over the four-year period.
- The monitoring wells were not sampled in April 2016 due to an operator error regarding the sample collection date.

2.5.2 Fairview Monitoring Wells No. 1 to 7

In compliance with the approved groundwater monitoring plan, the Town of Oliver has seven groundwater wells down gradient of the Fairview area. Referring to Figure 2-2, MW 1 to 3 are located south of the Town's effluent storage site in an area used for infiltration in the mid-1990s. With infiltration of effluent in the vicinity of these wells being discontinued in the mid-1990s, the Town does not sample or measure groundwater elevations MW 1 to 3. Groundwater depth and quality data for MW 4 to 7 are presented in Appendix E and summarized following.

Monitoring Woll	Voor	Minimum	Maximum	Average	Range of
Monitoring wen	rear	Depth (m)	Depth (m)	Depth (m)	Depth (m)
	2003	9.24	11.13	9.76	1.89
	2004	8.16	9.56	8.77	1.40
	2005	8.12	10.33	8.91	2.21
	2006	8.35	11.16	9.45	2.82
	2007	8.55	11.36	10.06	2.81
	2008	8.70	11.34	10.06	2.64
Test Well #4	2009	8.80	11.30	10.15	2.50
(Sand Pit)	2010	8.28	10.61	9.32	2.33
	2011	8.36	11.24	9.74	2.88
	2012	8.48	10.85	9.79	2.37
	2013	8.21	10.64	8.89	2.43
	2014	7.43	9.62	8.57	2.19
	2015	8.08	10.20	8.92	2.12
	2016	7.79	8.98	8.38	1.19
	2003	7.30	9.48	8.68	2.18
	2004	7.95	10.59	9.57	2.64
	2005	7.77	10.22	9.25	2.45
	2006	7.44	9.74	8.83	2.30
	2007	7.64	9.92	8.99	2.28
	2008	9.57	11.32	10.41	1.75
Test Well #5	2009	10.17	10.81	10.47	0.64
(125th Street)	2010	8.26	11.97	10.20	3.71
	2011	5.38	9.69	8.12	4.31
	2012	6.41	9.54	8.48	3.13
	2013	5.59	9.23	7.95	3.64
	2014	8.13	9.77	9.04	1.64
	2015	-	-	-	-
	2016	4.57	9.90	7.70	5.33
Test Well #6	2003-2016		13.92	(Dry)	
	2003	25.87	25.89	25.88	0.02
Tost Woll # 7	2004	25.89	25.89	25.89	0.00
(Road No 5)	2005	25.44	25.89	25.86	0.45
(Ruau No. 5)	2006	25.00	25.91 (Dry)	25.56	0.91
	2007-2016		25.91	(Dry)	

TABLE 2-3: SUMMARY OF GROUNDWATER DEPTHS FOR FAIRVIEW MONITORING WELLS

Sampling of MW 4 and 5 for water quality was completed in 2016, with results tabulated in Table 2-6 and attached in Appendix E. A comparison of 2003 to 2016 sampling data for chloride, nitrate/nitrite, and sodium (parameters generally accepted to be indicative of the influence from reclaimed water) is presented following. It should be noted that MW 6 and 7 were dry throughout 2016.

Monitoring Well	Sample Date	Chloride	Nitrate/Nitrite	Sodium	Ammonia	Total Hardness
- V	Apr. 22, 2003	72	0.52	55.8	0.05	1060
	Sep 30 2003	94	0.39	80.3	0.08	1370
	Apr. 20. 2004	111	0.97	73.1	0.04	1130
	Sep. 4, 2004	123	0.35	108	0.02	3280
	Apr. 12, 2005	102	1.44	85.1	< 0.01	1060
	Apr. 9, 2008	103	2.46	104	< 0.02	1170
	Apr. 7, 2009	128	2.21	103	< 0.02	1030
	Sep. 16, 2009	108	0.74	125	0.09	4980
	May. 19, 2010	137	2.43		0.02	
	Sep. 7, 2010	135	1.02	128	0.03	1310
Test Well #4 (Sand	Apr. 28, 2011	135	2.95	108	0.08	1020
Pit)	Apr. 24, 2012	130	2.39	101	0.04	1110
	Oct. 16, 2012		0.691	119	0.034	1420
	Apr. 9, 2013		1.78	118	0.091	1070
	Sep. 9, 2013		2.06	146	0.156	1350
	Apr. 16, 2014		3.02	115	0.073	1050
	Sep. 4, 2014	125	1.68	127		
	Apr. 14. 2015	141	3.56	120		
	Sep 16 2015	135	1.53	127	0.023	1440
	-	-	-	-	-	-
	Sep. 13.2016	129	1.63	19.2	0.021	1700
	Apr. 22, 2003	36.1	3.9	29.5	< 0.01	367
	Sep. 30, 2003	29.2	3.9	29	0.02	391
	Apr. 20. 2004	30.4	3.6	23.8	0.03	395
	Sep. 4, 2004	22.3	6.52	32.4	0.02	447
	Apr. 12, 2005	34.2	5.81	25.5	<0.01	409
	Sep. 7, 2005	46.5	12.4	25.7	<0.01	537
	Jun. 15, 2006	34.8	8.62	27	<0.01	543
	Sep. 21, 2006	34.6	6.05	28	1.65	399
	May. 1, 2007	34.4	2.15	26	0.41	355
	Sep. 13, 2007	27.5	2.95	30.2	0.03	388
	Apr. 9, 2008	29.1	3.62	35.9	0.08	399
	Sep. 11, 2008	36	2.8	33.7	0.13	512
	Apr. 7, 2009	76	6.1	35.1	<0.02	407
Test Well #5 (125th	Sep. 16, 2009	77.7	5.72	21.6	<0.02	480
Street)	May. 19, 2010	53.9	3.03		0.03	
	Sep. 7, 2010	37.3	1.03	29.2	0.03	467
	Apr. 28, 2011	26.3	2.1	41	0.04	639
	Sep. 28, 2011	38.5	2.75	48.7	0.35	423
	Apr. 24, 2012	48.8	3.19	22.4	1.9	460
	Oct. 16, 2012		2.94	19.3	0.025	446
	Apr. 9, 2013		1.11	15.9	0.036	381
	Sep. 9, 2013		0.652	12.4	0.071	398
	Apr. 16, 2014		0.577	13.1	0.022	465
	Sep. 4, 2014	14.7	0.683	14		
	Apr. 14, 2015	16.7	1.31	14.7		
	Sep. 16, 2015	27.7	0.794	31.6	< 0.020	456
	-	-	-	-	-	-
	Sep. 13,2016	23.9	1.11	20.4	0.022	960

TABLE 2-4: SUMMARY OF THE WATER QUALITY DATA FOR FAIRVIEW MONITORING WELLS

Test Well #4 is influenced by surface water from the toe drain of the reclaimed water storage reservoir dam, and therefore has chloride and sodium levels that are comparable to reclaimed water.

No infiltration of reclaimed water on lands up gradient of Test Well #5 has occurred since 2004, and water quality at Test Well #5 is considered representative of background conditions. The nitrite/nitrate and chloride concentrations continue to be indicative of agricultural land use in the area and are consistent with historical data. As mentioned, there was no sampling in April 2016 due to an operator error regarding the sample collection date.

APPENDIX A

Flow and Storage Reservoir Level Data

2016 - Town of Oliver Sewer Flows - PE - 13717

	High	h Lift Statior	ו	Chlorin	e Booster S	er Station	
	Daily	Total	Monthly	Total	Total	Monthly	
	Flow	Monthly	Average	Daily	Monthly	Average	
January	m3/day	m3/day	m3/day	m3/day (3)	m3/day	m3/day	
1	1,326			0			
2	2,476			0			
3	1,310			0			
4	505			0			
5	1,650			0			
6	1,533			0			
7	1,680			0			
8	1,564			0			
9	2,526			0			
10	1,450			0			
11	209			0			
12	1,873			0			
13	1,458			0			
14	1,623			0			
15	1,638			0			
16	2,359			0			
17	1,620			0			
18	684			0			
19	1,696			0			
20	1,676			0			
21	1,487			0			
22	1,640			0			
23	2,779			0			
24	1,369			0			
25	631			0			
26	1,746			0			
27	1,516			0			
28	1,597			0			
29	1,476			0			
30	2,627			0			
31	1,547			0			
		49272	1589		0.0	0	
	OC Limit	n/a	2050m3/day		n/a	n/a	

2016 - Tow	n of Oliver	[•] Sewer Flows	- PE - 13717
------------	-------------	--------------------------	--------------

	High Lift Station		Chlorine Booster Station			
	Daily	Total	Monthly	Total	Total	Monthly
	Flow	Monthly	Average	Daily	Monthly	Average
February	m3/day	m3/day	m3/day	m3/day (3)	m3/day	m3/day
1	207			0		
2	1,660			0		
3	1,841			0		
4	1,473			0		
5	1,665			0		
6	2,278			0		
7	1,442			0		
8	576			0		
9	1,549			0		
10	1,591			0		
11	1,460			0		
12	1,604			0		
13	2,401			0		
14	1,550			0		
15	266			0		
16	1,770			0		
17	1,585			0		
18	1,751			0		
19	1,567			0		
20	2,413			0		
21	1,677			0		
22	211			0		
23	1,845			0		
24	1,625			0		
25	1,622			0		
26	1,538			0		
27	2,162			0		
28	1,413			0		
29	862					
30						
31						
		43604	1504		0.0	0
	OC Limit	n/a	2050m3/da	ау	n/a	n/a

2016 - Town of Oliver Sewer Flows - PE - 13717

	High Lif	t Station		Chlorine Booster Stat		Station
	Daily	Total	Monthly	Total Total Mor		Monthly
	Flow	Monthly	Average	Daily	Monthly	Average
March	m3/day	m3/day	m3/day	m3/day (3)	m3/day	m3/day
	1 1,296					
	2 1,851					
	3 1,465					
	4 1,620					
	5 1,939					
	6 1,646					
	7 1,180					
	8 1,560					
	9 1,624					
1	0 1,851					
1	1 1,408					
1	2 2,676					
1	3 1,652					
1	4 235					
1	5 1,756					
1	6 1,754					
1	7 1,579					
1	8 1,653					
1	9 2,151					
2	0 1,721					
2	1 917					
2	2 1,519					
2	3 1,770			0		
2	4 1,585			791		
2	5 1,673			0		
2	6 2,140			0		
2	7 2,043			0		
2	8 594			0		
2	91,840			2,605		
3	01,698			0		
3	1 1,772			711		
		50167	1619		4106.2	156
	OC Limit	00107 n/o	2050m2/da		4100.Z	400 n/o
		n/a	2000110/08	ау	n/a	n/a

	High	Lift Station		Chlorin	e Booster S	Station
	Daily	Total	Monthly	Total	Total	Monthly
	Flow	Monthly	Average	Daily	Monthly	Average
April	m3/day	m3/day	m3/day	m3/day (3)	m3/day	m3/day
. 1	1,693			5		-
2	1,388			809		
3	1,748			625		
4	797			298		
5	1,801			698		
6	1,546			0		
7	1,786			1,508		
8	1,818			1,465		
9	2,349			1,402		
10	1,705			151		
11	813			2,078		
12	1,523			1,860		
13	1,582			2,130		
14	1,812			1,851		
15	1,751			791		
16	2,203			749		
17	1,512			0		
18	1,111			2,206		
19	1,823			2,070		
20	1,776			3,616		
21	1,827			4,099		
22	1,661			3,658		
23	3,202			3,271		
24	1,607			758		
25	915			724		
26	2,165			2,682		
27	2,066			3,540		
28	2,158			2,869		
29	2,095			4,162		
30	3,065			2,286		
31						
		53300	1777		52362.3	1745
	OC Limit	n/a	2050m3/da	у	n/a	n/a

		High	Lift Station		Chlorine Booster Station		
		Daily	Total	Monthly	Total	Total	Monthly
		Flow	Monthly	Average	Daily	Monthly	Average
May		m3/day	m3/day	m3/day	m3/day (3)	m3/day	m3/day
	1	2,008			2,241		
	2	913			3,660		
	3	2,056			2,663		
	4	2,566			4,701		
	5	2,450			2,598		
	6	2,201			2,054		
	7	3,122			2,624		
	8	2,663			1,574		
	9	906			2,608		
	10	2,154			2,490		
	11	2,186			2,527		
	12	2,277			2,450		
	13	2,186			1,556		
	14	3,164			2,593		
	15	2,661			1,381		
	16	798			3,196		
	17	2,108			3,711		
	18	1,918			4,280		
	19	2,008			698		
	20	2,055			2,764		
	21	2,815			2,228		
	22	1,982			0		
	23	1,031			1,098		
	24	2,038			1,896		
	25	1,832			2,426		
	26	1,911			3,628		
	27	1,871			3,750		
	28	2,747			2,179		
	29	2,003			1,546		
	30	1,101			2,471		
	31	1,700			3,552		
			63430	2046		77141.9	2488
		OC Limit	n/a	2050m3/da	ay	n/a	n/a

2016 - Town of Oliver Sewer Flows - PE - 13717

2016 - Town	of Oliver	Sewer Flows	- PE - 13	3717
-------------	-----------	--------------------	-----------	------

		High L	ift Station		Chlorine Booster Station			
		Daily	Total	Monthly	Total	Total	Monthly	
		Flow	Monthly	Average	Daily	Monthly	Average	
June		m3/day	m3/day	m3/day	m3/day (3)	m3/day	m3/day	
	1	1,726		-	4,879			
	2	1,779			4,211			
	3	1,748			3,807			
	4	2,936			4,279			
	5	1,889			3,727			
	6	925			2,880			
	7	1,653			3,872			
	8	1,678			3,577			
	9	1,746			4,898			
	10	1,764			2,869			
	11	2,474			600			
	12	2,418			0			
	13	467			803			
	14	1,750			2,212			
	15	1,872			2,345			
	16	1,827			2,091			
	17	1,754			2,562			
	18	2,358			1,585			
	19	1,631			1,166			
	20	1,169			1,418			
	21	1,618			2,537			
	22	1,654			3,490			
	23	1,696			2,653			
	24	1,691			1,851			
	25	2,659			0			
	26	1,832			618			
	27	893			1,344			
	28	1,671			2,339			
	29	1,891			523			
	30	1,967			2,708			
	31							
			53133	1771		71841.9	2395	
		OC Limit	n/a	2050m3/da	ıy	n/a	n/a	
	[High	High Lift Station Chl			ne Booster Station		
------	----	----------	-----------------------	-----------	------------	--------------------	---------	--
	Ī	Daily	Total	Monthly	Total	Total	Monthly	
		Flow	Monthly	Average	Daily	Monthly	Average	
July		m3/day	m3/day	m3/day	m3/day (3)	m3/day	m3/day	
-	1	1,599			2,995			
	2	3,181			2,995			
	3	2,461			2,827			
	4	979			2,983			
	5	2,195			2,964			
	6	2,005			1,887	7		
	7	2,541			2,522			
	8	2,572			3,620			
	9	2,660			0			
	10	2,453		69				
	11	1,038						
	12	1,923						
	13	2,038			4,336			
	14	2,233			4,348			
	15	2,260			4,277			
	16	3,029			2,837			
	17	2,091			679			
	18	575			1,978			
	19	1,750			2,621			
	20	2,258			4,328			
	21	1,694			5,728			
	22	1,712			4,243			
	23	3,284			2,817			
	24	1,929			3,265			
	25	1,155			4,523			
	26	1,749			4,824			
	27	1,968			3,912			
	28	2,240			3,136			
	29	1,893			4,554			
	30	2,969			3,104			
	31	2,550			3,006			
			64983	2096		96273.7	3106	
		OC Limit	n/a	2050m3/da	iy	n/a	n/a	

	Γ	High	Lift Station		Chlorin	ine Booster Station		
		Daily	Total	Monthly	Total	Total	Monthly	
		Flow	Monthly	Average	Daily	Monthly	Average	
August		m3/day	m3/day	m3/day	m3/day (3)	m3/day	m3/day	
-	1	710			5,031			
	2	1,746			4,768			
3	3	2,077			3,397			
2	4	1,875			4,327			
Ę	5	2,379			3,361			
6	6	3,164			3,968			
7	7	2,014			3,915			
8	8	618			4,179			
ę	9	1,733			3,976			
1(0	2,011			2,621			
11	1	2,234			2,942			
12	2	1,715			3,004			
13	3	2,894			3,381			
14	4	1,754			3,342			
15	5	1,127			3,118			
16	6	1,755			3,337			
17	7	1,743			3,136			
18	8	1,995			1,933			
19	9	1,470			3,129			
20	0	2,911			3,089			
2	1	1,750			2,707			
22	2	716			3,113			
23	3	1,694			3,429			
24	4	1,961			4,361			
25	5	1,668			3,419			
26	6	2,219			4,281			
27	7	2,992			2,821			
28	8	1,819			995			
29	9	147			2,872			
30	0	1,660			3,287			
3	1	1,669			2,915			
			56219	1814		104153.1	3360	
		OC Limit	n/a	2050m3/da	iy	n/a	n/a	

2016 - Town	of Oliver	Sewer Flows	- PE -	13717
-------------	-----------	--------------------	--------	-------

	High	Lift Station Chl		Chlorin	ine Booster Station		
	Daily	Total	Monthly	Total	Total	Monthly	
	Flow	Monthly	Average	Daily	Monthly	Average	
September	m3/day	m3/day	m3/day	m3/day (3)	m3/day	m3/day	
. 1	2,390			2,875			
2	1,903			2,424			
3	2,882			0			
4	1,864			0			
5	764			720			
6	1,851			0			
7	1,620			681			
8	1,925			433			
9	1,776			1,901			
10	2,625			1,797			
11	1,605			1,853			
12	1,175			1,908			
13	1,756			1,687			
14	1,788			1,809			
15	2,063			2,213			
16	1,968			2,422			
17	2,416			1,265			
18	1,879			442			
19	443			1,062			
20	1,782			600			
21	1,538			1,372			
22	1,821			625			
23	1,768			0			
24	2,518			0			
25	1,609			0			
26	507			716			
27	1,644			595			
28	1,657			1,851			
29	1,718			2,036			
30	1,705			2,254			
31							
		52963	1765		35539.2	1185	
	OC Limit	n/a	2050m3/da	ıy	n/a	n/a	

	High	n Lift Station C			rine Booster Station		
	Daily	Total	Monthly	Total	Total	Monthly	
	Flow	Monthly	Average	Daily	Monthly	Average	
October	m3/day	m3/day	m3/day	m3/day (3)	m3/day	m3/day	
1	2,479			2,305			
2	1,741			1,892			
3	948			2,229			
4	1,720			2,110			
5	1,675			669			
6	1,641						
7	1,423						
8	2,411						
9	1,284						
10	1,110			0			
11	1,668			0			
12	1,637			694			
13	1,694			0			
14	1,786			0			
15	2,586			0			
16	1,651			0			
17	896			0			
18	1,658			0			
19	1,681			0			
20	1,713			0			
21	1,671			0			
22	2,359			0			
23	1,559			0			
24	1,150			0			
25	1,637			24			
26	1,634			339			
27	1,656			0			
28	1,641			0			
29	2,593			0			
30	1,521			0			
31	1,031			0			
		51856	1673		12802.9	413	
	OC Limit	n/a	2050m3/da	iy	n/a	n/a	

	High	h Lift Statior	ו	Chlorin	e Booster S	Booster Station	
	Daily	Total	Monthly	Total	Total	Monthly	
	Flow	Monthly	Average	Daily	Monthly	Average	
November	m3/day	m3/day	m3/day	m3/day (3)	m3/day	m3/day	
1	1,688			0			
2	1,509			0			
3	1,651			0			
4	1,541			0			
5	2,612			0			
6	1,589						
7	795						
8	1,747						
9	1,387			0			
10	1,698			0			
11	1,822			0			
12	2,387			0			
13	1,515			0			
14	737			0			
15	1,623			0			
16	1,833			0			
17	1,725			0			
18	1,678			0			
19	2,699			0			
20	1,643			0			
21	226			0			
22	1,741			0			
23	1,888			0			
24	1,741			0			
25	1,875			0			
26	2,480			0			
27	1,612			0			
28	376			0			
29	1,848			0			
30	1,432			0			
31							
		49098	1637		0.0	0	
	OC Limit	n/a	2050m3/da	ay 🗌	n/a	n/a	

	Hi	gh Lift Stati	on	Chlorine Booste		Station	
	Daily	Total	Monthly	Total	Total	Monthly	
	Flow	Monthly	Average	Daily	Monthly	Average	
December	m3/day	m3/day	m3/day	m3/day (3)	m3/day	m3/day	
1	1,889			0			
2	1,681			0			
3	2,543			0			
4	1,671			0			
5	409			0			
6	1,841			0			
7	1,678			0			
8	1,651			0			
9	1,656			0			
10	2,380			0			
11	1,585			0			
12	625			0			
13	1,848			0			
14	1,725			0			
15	1,587			0			
16	1,803			0			
17	2,438			0			
18	1,679			0			
19	534			0			
20	1,870			0			
21	1,792			0			
22	1,684			0			
23	1,475			0			
24	2,744			0			
25	1,544			0			
26	401			0			
27	1,617			0			
28	1,654			0			
29	1,630			0			
30	1,678			0			
31	2,458			0			
		51768	1670		0.0	0	
	OC Limit	n/a	2050m3/da	ay	n/a	n/a	

2016 - TOWN OF OLIVER Summary of Monthly Sewer Flows

	High Lift	Station	Chlorine Booster Station		
	Total	Monthly	Total	Monthly	
	Monthly	Average	Daily	Average	
	m3/day	m3/day	m3/day	m3/day	
Jan	49,272	1,589	0	0	
Feb	43,604	1,504	0	0	
Mar	50,167	1,618	4,106	456	
Apr	53,300	1,777	52,362	1,745	
May	63,430	2,046	77,142	2,488	
Jun	53,133	1,771	71,842	2,395	
Jul	64,983	2,096	96,274	3,106	
Aug	56,219	1,814	104,153	3,360	
Sep	52,963	1,765	35,539	1,185	
Oct	51,856	1,673	12,803	413	
Nov	49,098	1,637	0	0	
Dec	51,768	1,670	0	0	
Total	639,794		454,221	15,148	
Average	1,753		1,244	1,262	

Month	In Flow - Metered	Out Flow - Metered at	Reservoir Elevation	Volume in Storage
End	at High Lift Station - cu. m.	Chlorine Booster Station - cu. m.	metres	cu. m.
			As of Dec. 31/06	As of Dec.31/06
Jan	49272.18406	0.0		
Feb	43604.06358	0.0		
Mar	50166.94562	4106.2		
Apr	53299.94925	52362.3		
May	63430.10108	77141.9		
Jun	53133.37978	71841.9		
Jul	64983.02462	96273.7		
Aug	56218.70993	104153.0538		
Sep	52962.56686	35539.16437		
Oct	51855.72381	12802.9213		
Nov	49098.48665	0.0		
Dec	51768.45871	0.0		
Total	639793.594	454221.2	0	0

2016 - TOWN OF OLIVER PE - 13717 - Balance of Storage Reservoir Volumes

Summary:

In storage Dec.31/	+	Inflow	- Water	used	- Losses		= In s	storage Dec.31/
160,000 cu. M.	+	cu. m.		_ cu. m.		cu.m.	=	cu. m.

Notes:

Source of losses includes seepage and evaporation.
Inaccurate reservoir volumes of meter readings may be a factor in the loss calculation that hasn't been considered.

- No allowance has been made for storm inflow.

2016 - TOWN OF OLIVER STORAGE RESERVOIR LEVEL DATA

	JANU	JARY	FEBR	UARY	MAR	RCH	AP	RIL
		VOLUME IN		VOLUME IN		VOLUME IN		VOLUME IN
DAY	ELEVATION	STORAGE*	ELEVATION	STORAGE*	ELEVATION	STORAGE*	ELEVATION	STORAGE*
1			444.17	256,000				
2								
3								
4							445.47	343,000
5								
6								
7	443.57	218,000			444.89	309,000		
8			444.31	266,000				
9								
10								242.000
10	442.69	224 000					445.45	342,000
12	443.00	224,000						
1/					115 1	322.000		
14					443.1	322,000		
16								
10			444 49	279 000				
18	443.83	233.000		2.0,000			445.3	335,000
19		_00,000						,
20								
21					445.29	334,000		
22			444.62	288,000		,		
23								
24								
25								
26							445.03	318,000
27								
28								
29			444.74	295,000	445.44	342,000		
30								
31								

* Volume in Storage above Elevation 439.00 Elevation 439.00 is minimum 60 day average operating level

	MAY		JU	NE	JU	LY	AUG	UST
		VOLUME IN		VOLUME IN		VOLUME IN		VOLUME IN
DAY	ELEVATION	STORAGE*	ELEVATION	STORAGE*	ELEVATION	STORAGE*	ELEVATION	STORAGE*
1							442.78	169,000
2	444.86	306,000						
3								
4								
5				050.000	443.61	220,000		
6 7			444.1	252,000				
/							112 12	140.000
0	111 73	205 000					442.43	149,000
10	444.75	293,000						
10					443 64	222 000		
12					110.01	222,000		
13			443.98	245.000				
14				-,				
15							442.17	133,000
16	444.63	289,000						
17								
18					443.42	208,000		
19								
20			443.88	237,000				
21								100.000
22							441.93	120,000
23		202.000						
24	444.04	203,000			112 11	180.000		
20					445.11	169,000		
20			443 82	233 000				
28			440.02	200,000				
29							441.67	108.000
30	444.4	273,000						,
31								

* Volume in Storage above Elevation 439.00 Elevation 439.00 is minimum 60 day average operating level

	SEPTE	MBER	ОСТО	DBER	NOVE	MBER	DECE	MBER
		VOLUME IN		VOLUME IN		VOLUME IN		VOLUME IN
DAY	ELEVATION	STORAGE*	ELEVATION	STORAGE*	ELEVATION	STORAGE*	ELEVATION	STORAGE*
1								
2								
3								
4							442 70	227.000
5	441.65	107 000					443.72	227,000
7	441.05	107,000			443 64	222 000		
8					440.04	222,000		
9								
10								
11			441.72	110,000				
12	441.65	107,000					443.88	237,000
13								
14					443.21	195,000		
15								
16 17			444.00	100.000				
17			441.95	120,000				
10	441 6	105 000					444 02	247 000
20	441.0	100,000					444.02	247,000
21					443.37	204,000		
22						·		
23								
24			442.13	131,000				
25								
26	441.72	110,000						
27					442 57	218 000		
28 20					443.57	∠18,000		
∠9 30								
<u>3</u> 1			442.84	173,000				

* Volume in Storage above Elevation 439.00 Elevation 439.00 is minimum 60 day average operating level

	Max	Min
Jan	443.83	443.57
Feb	444.74	444.17
Mar	445.44	444.89
Apr	445.47	445.03
May	444.86	444.4
Jun	444.1	443.82
Jul	443.64	443.11
Aug	442.78	441.67
Sep	441.72	441.6
Oct	442.84	441.72
Nov	443.64	443.21
Dec	444.02	443.72
Overall	445.47	441.6
Date	04-Apr-16	19-Sep-16
Volume	343,000	105,000

APPENDIX B

Influent and Effluent Sampling Data

2016 - TOWN OF OLIVER PE-13717 - Effluent Sampling - Cell #3, prior to storage reservoir - EMS ID E222151

	Date	BOD5	TSS	ToT P	Ortho P	Tot Diss P	Tot N	Ammonia N	Nitrate N	Nitrite N	Organic N	Kjedahl N
OC Limit		45 mg/L	60 mg/L									
Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Frequency		monthly	monthly	semi-annually								
January	6	23	23									
February	3	34	24									
March	7			4.14	1.9	3.85	33.2	31.2	1.05	0.175	<1.00	32
March	7	36	16									
March	7			4.17	1.21							
April	6	9	12									
May	5	17	7									
June	8	26	13									
July	6	9	10									
August	9	7	16									
September	6			4.25	1.27	3.9	12.8	1.82	5.33	1.84	3.79	5.61
September	6			2.35	0.36							
September	6	21	18									
October	5	23	9									
November	8	42	17									
December	6	28	13									

PE - 13717 - Influent Sampling - Equalization Basin - EMS ID E222152 Influent Sampling

Semi Annual Testing

	Date	Fecal Coliforms	Total Coliforms	Total P	Total N	Total Chloride	Sodium	Free CL Res
OC Limit		#2.2 MPN/100 ml	n/a	n/a	n/a	n/a	n/a	n/a
Unit		MPN/100ml	MPN/100ml	mg/L	mg/L	mg/L	mg/L	mg/L
Frequency		monthly	monthly	monthly	monthly	monthly	monthly	weekly
April	6	<2.2	<2.2	4.69	20.8	151	105	0.34
May	9	<2.2	<2.2	2.94	18.5	160	100	0.35
June	8	<2.2	<2.2	3.66	17.4	153	89.8	0.37
July	6	<2.2	<2.2	4.12	15.4	159	111	0.33
August	9	<2.2	<2.2	4.16	11.3	152	101	0.34
September	6	<2.2	<2.2	3.38	8.79	163	115	0.31
October	5	<2.2	<2.2	5.34	12.4	165	127	0.31

2016 - TOWN OF OLIVER PE - 13717 - Chlorine Contact Chamber Prior to Irrigation - EMS ID E222150

* Note: The operational permit limit for fecal coliform in re-claimed water applied to agricultural land is 200 MPN per 100mL. Most of the re-claimed water in Oliver is applied on the Fairview Mountain Golf Course which is classified as high public use, hence the lower limit of 2.2 MPN per 100 mL.

•

APPENDIX C

Seasonal Precipitation Data

Seasonal Precipitation Summary: 1992-2016

Oliver STF)							SEASON
	-			-				TOTAL (mm)
YEAR	APR	MAY	JUNE	JULY	AUG	SEPT	ОСТ	
1992	41.4	8.0	64.8	62.0	9.8	2.2	11.8	200.0
1993	50.6	34.5	48.0	67.9	39.5	18.4	14.8	273.7
1994	42.4	30.8	37.8	12.2	33.9	17.4	24.8	199.3
1995	17.5	17.9	37.6	10.2	22.6	7.5	10.6	123.9
1996	15.8	62.2	27.9	24.2	5.2	52.3	28.2	215.8
1997	35.3	41.8	87.9	47.6	18.5	63.4	29.0	323.5
1998	29.4	79.1	31.2	25.1	12.3	2.9	33.7	213.7
1999	20.1	28.9	40.3	15.5	44.1	1.2	11.7	161.8
2000	10.4	24.8	25.8	26.7	4.5	14.4	19.6	126.2
2001	37.6	16.4	39.4	32.2	15.0	13.6	24.1	178.3
2002	8.7	43.0	4.8	9.8	0.3	9.4	7.3	83.3
2003	29.4	18.4	12.9	0	0.0	11.4	21.7	93.8
2004	27.9	30.7	56.0	7.8	27.7	32.3	48.9	231.3
2005	12.4	41.1	48.4	2.9	1.3	2.9	22.4	131.4
2006	20.8	52.0	36.0	14.2	0.1	8.7	12.4	144.2
2007	4.9	3.2	24.1	29.0	2.8	12.2	11.6	87.8
2008	5.0	3.65	27.5	5.0	19.9	2.7	9.9	73.7
2009	4.8	26.8	13.4	28.6	27.8	20.2	39.5	161.1
2010	20.0	55.9	68.3	14.6	9.1	38.9	13.7	220.5
2011	12.5	69.6	24.4	18.7	0.0	3.4	22.4	151.0
2012	39.9	14.8	78.7	46	0.3	2	40.8	222.5
2013	16.5	30.5	35.0	8.6	36.6	47.5	5.6	180.3
2014	15.3	24.4	42.8	25	12.2	19.3	35.9	174.9
2015	2.2	54.4	13.2	17	19.9	3	26.3	136.0
2016	5.8	14.9	38.5	25.9	1.2	16.4	62.8	165.5
Avg.	21.1	33.1	38.6	23.1	14.6	16.9	23.6	170.9

1992 to 1996 data from Environment Canada 1997 - 2005 data compiled from Town of Oliver daily records

APPENDIX D

Sludge Monitoring (Quality) Data

2016 - TOWN OF OLIVER PE-13717 - Effluent Sludge - Cell #2 - Sample 1 & 2

				WALP Gu	idelines	
		CELL 2 EFF	Agricultural	Agricultural	Retail	Retail
Parameter	Unit	SLUDGE-1	Low Grade	High Grade	Low Grade	High Grade
Aluminum	ug/g	11000				
Antimony	ug/g	1.8				
Arsenic	ug/g	10	75	75	75	75
Barium	ug/g	230				
Beryllium	ug/g	0.3				
Bismuth	ug/g	22				
Cadmium	ug/g	2.2	25	20	20	5-20
Calcium	ug/g	20000				
Chromium	ug/g	45				
Cobalt	ug/g	3.9	150	150	150	150
Copper	ug/g	1500				
Iron	ug/g	12000				
Lead	ug/g	41	1000	500	500	500
Magnesium	ug/g	3800				
Manganese	ug/g	240				
Mercury	ug/g	5.1	10	5	5	5
Molybdenum	ug/g	22	20	20	20	20
Nickel	ug/g	23	200	180	180	180
Phosphorus	ug/g	9500				
Potassium	ug/g	1300				
Selenium	ug/g	14	14	14	14	14
Silver	ug/g	42				
Sodium	ug/g	1600				
Strontium	ug/g	290				
Tellurium	ug/g	>0.1				
Thallium	ug/g	>0.1				
Tin	ug/g	29				
Titanium	ug/g	91				
Vanadium	ug/g	26				
Zinc	ug/g	1100	2500	1850	1850	1850
Zirconium	ug/g	6				
Total Solids	%	5.6				

ANALYTICAL REPORT - Sampled on November 8, 2016

Total Solids	%	5.6
Volatile Solids	%	46.1

APPENDIX E

Groundwater Monitoring Data

2016 - TOWN OF OLIVER

GROUNDWATER MONITORING WELL #1 (AIR CADET)

	Parameter	'S										
					Nit	trogen		Phosphorus		Metals		
Sample	Total	Specific						Dissolved	Total			
Date	Hardness	Conductance	Chloride	Ammonia	Nitrite	Nitrate	Nitrate/Nitrite	Phosphorus	Phosphorus	Calcium	Magnesium	Sodium
April sampling not done in 2016												
Sept 13	386	746	13.7	0.032	0.272	14.7	15	0.033	0.154	119	21.7	19.1

GROUND WATER MONITORING WELL #2 (RODEO GROUNDS)

	Parameter	rs										
				Nitrogen				Phosp	ohorus	Metals		
Sample	Total	Specific						Dissolved	Total			
Date	Hardness	Conductance	Chloride	Ammonia	Nitrite	Nitrate	Nitrate/Nitrite	Phosphorus	Phosphorus	Calcium	Magnesium	Sodium
April samp	ling not don	e in 2016										
Sept 13	1110	573	6.54	0.032	<0.010	0.628	0.628	0.007	0.745	371	43.9	19.2

GROUND WATER MONITORING WELL #3 (BULK FUEL)

	Parameter	S										
				Nitrogen				Phosp	horus		Metals	
Sample	Total	Specific						Dissolved	Total			
Date	Hardness	Conductance	Chloride	Ammonia	Nitrite	Nitrate	Nitrate/Nitrite	Phosphorus	Phosphorus	Calcium	Magnesium	Sodium
April sampling not done in 2016												
Sept 13	389	661	8.01	0.032	<0.010	0.214	0.214	0.009	1.58	94.5	37.2	17.2

GROUND WATER MONITORING WELL #4 (SAND PIT)

	Parameter	'S										
					Nit	trogen		Phosp	ohorus	Metals		
Sample	Total	Specific						Dissolved	Total			
Date	Hardness	Conductance	Chloride	Ammonia	Nitrite	Nitrate	Nitrate/Nitrite	Phosphorus	Phosphorus	Calcium	Magnesium	Sodium
April sampling not done in 2016												
Sept 13	1700	1950	129	0.021	<0.010	1.63	1.63	0.017	0.082	371	43.9	19.2

GROUND WATER MONITORING WELL #5 (125TH STREET)

	Parameter	rs										
				Nitrogen				Phosp	ohorus	Metals		
Sample	Total	Specific						Dissolved	Total			
Date	Hardness	Conductance	Chloride	Ammonia	Nitrite	Nitrate	Nitrate/Nitrite	Phosphorus	Phosphorus	Calcium	Magnesium	Sodium
April samp	ling not don	e in 2016										
Sept 13	960	770	23.9	0.022	<0.010	1.11	1.11	0.072	0.196	251	80.7	20.4

2016 - TOWN OF OLIVER

GROUNDWATER MONITORING WELL READINGS (Note: The value recorded indicates the measurement from the top of casing to the water level expressed in meters.)

		Air Cadet	Rodeo Grounds	91A Street	Test Well #2	Test Well #4	Test Well #5	Test Well #6	Test Well #7
Month	Day	(Well #1)	(Well #2)	(Well #3)	(Corner 350th/T.L.)	(Sand Pit)	(Chokecherry)	(Golf Course)	(Road #5 West)
January	13	10.35	5.9	1.3	fenced off	8.42	9.53	3.92 (dry)	25.91 (dry)
				1.00					05.04 (1.)
February	25	10.4	5.88	1.22	fenced off	1.87	9.8	3.92 (dry)	25.91 (dry)
March	18	10./1	5 86	1 15	fenced off	7 70	9 90	3.92 (drv)	25.91 (drv)
Maron	10	10.41	0.00	1.10		1.10	0.00	0.02 (dry)	20.01 (dry)
ļ						ļ		Į	
April	13	10.42	5.92	1.29	fenced off	8.07	7.92	3.92 (dry)	25.91 (dry)
		-							
May	6	10.42	5.81	1.32	fenced off	8.36	4.57	3.92 (dry)	25.91 (dry)
lung	0	10 F	EQ	1 22	forward off	9.67	E 70	2.02 (dm/)	25.01 (dm/)
Julie	9	10.5	5.0	1.55	lenced on	0.07	5.70	3.92 (ury)	25.91 (ury)
July	8	10 41	5 73	1 35	fenced off	87	6 75	3 92 (drv)	25.91 (drv)
ouiy			0.1.0			0	011.0	0.02 (0.9)	20:01 (0.9)
۰ ۰								1	
August	8	10.32	5.68	1.43	fenced off	8.28	7.23	3.92 (dry)	25.91 (dry)
September	2	10.34	5.66	1.38	fenced off	8.98	7.34	3.92 (dry)	25.91 (dry)
	14	10.32	5.74	1.3		8.73	7.45		
October	6	10.28	5 76	1 31	fenced off	8.67	7.65	3.02 (dn/)	25.01 (dp/)
Octobel	0	10.20	5.70	1.51	lenced on	0.07	7.05	5.92 (ury)	23.91 (ury)
I						Į		Į	
November	15	10.21	5.9	1.19	fenced off	8.19	8.01	3.92 (dry)	25.91 (dry)
						_			
December	6	10.29	5.97	1.13	fenced off	8.21	8.22	3.92 (dry)	25.91 (dry)
Max		10 50	E 07	1 40		0.00	0.00		
Min		10.50	5.97 F 66	1.43		0.98 7 70	9.90		
Average		10.21	0.00 5.82	1.13		1.19 8.38	4.57 7 70		
Range		10.50	5.02	1.20		0.00	1.10		
i tango									

APPENDIX F

Operational Certificate for PE 12717

Province of British Columbia

MINISTRY OF ENVIRONMENT

UZ:

JUTING:

DIMMENTS

OPIES:

LANDS AND PARKS

Environmental Protection #201-3547 Skaha Lake Rd. Penticton, British Columbia V2A 7K2 Telephone: (604) 490-8200 Fax: (604) 492-1314

Date: December 14, 1995

DEC 2 0 1995

REC<u>FINED</u>

5 File: 76750-40/PE-13717 (01)

REGISTERED MAIL

TOWN OF OLIVER

The Corporation of the Town of Oliver PO Box 638 Oliver BC VOH 1TO

Attention: Tom Szalay, Administrator

Enclosed is a copy of the Operational Certificate No. PE-13717 issued under the provisions of the Waste Management Act. This Operational Certificate supersedes Permit PE-00102 which is cancelled in accordance with Section 16(13) of the Waste Management Act. Your attention is respectfully directed to the terms and conditions outlined in the Operational Certificate. An annual Permit fee will be determined according to the Waste Management -1^h Permit Fee Regulation.

This Operational Certificate does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority shall rest with the Operational Certificate holder.

This Operational Certificate is issued pursuant to the provisions of the Waste Management Act to ensure compliance with Section 34(3) of that statute, which makes it an offence to discharge waste without proper authorization. It remains the responsibility of the Operational Certificate holder to ensure that all activities conducted under this authorization comply with any other applicable legislation which may be in force from time to time.

The administration of this Operational Certificate will be carried out by staff from our Regional Office located in Penticton, (telephone 490-8200). Plans, data and reports pertinent to the Operational Certificate are to be submitted to the Environmental Protection office, Suite 201, 3547 Skaha Lake Road, Penticton, British Columbia, V2A 7K2. - 30th Street, Vernon, British Columbia, V1T 9G3.

This decision may be appealed by any person(s) who considers themselves aggrieved by this decision, in accordance with Part 5 of the Waste Management Act. Written notice of intent to appeal must be received by the Regional Waste Manager within twenty-one (21) days of the date of notification of this decision.

Yours truly

T.R. Forty, P.Eng. Assistant Regional Waste Manager Okanagan Sub-Region PROVINCE OF BRITISH COLUMBIA

Environmental Protection #201 - 3547 Skaha Lake Road Penticton British Columbia, V2A 7K2 Telephone: (604) 490-8200

MINISTRY OF ENVIRONMENT, LANDS AND PARKS

OPERATIONAL CERTIFICATE

PE 13717

Under the Provisions of the Waste Management Act

TOWN OF OLIVER

P.O. Box 638

Oliver, British Columbia

V0E 1T0

is authorized to discharge reclaimed wastewater to the ground by irrigation, from a municipal sewage collection and aerated lagoon sewage treatment facility located at Oliver, British Columbia, subject to the conditions listed below. Contravention of any of these conditions is a violation of the Waste Management Act and may result in prosecution.

1. SPECIFIC AUTHORIZED DISCHARGES AND RELATED REQUIREMENTS

The discharge of effluent to which this sub-section is applicable is from a municipal sewage treatment facility located approximately as shown on the attached Site Plan A and Site Plan B. The reference number (S.E.A.M. site number) for this discharge is E222150.

1.1 Discharge Quantity

- 1.1.1 The maximum authorized rate of effluent to be discharged from the aerated lagoon sewage treatment system to the reclaimed wastewater storage reservoir, averaged on a monthly basis:
 - 1995 1950 m^3 per day 1996 - 2000 m^3 per day 1997 - 2050 m^3 per day 1998 - 2100 m^3 per day 1999 - 2150 m^3 per day 2000 - 2200 m^3 per day

Date Issued: December 14, 1995 Amendment Date: (most recent)

T.R. Forty, P.Eng. Assistant Regional Waste Manager 1.1.2 There is no maximum authorized rate of reclaimed wastewater to be discharged from the storage reservoir for beneficial use as irrigation water.

1.2 Discharge Quality

1.2.1 It is recommended that to ensure reclaimed wastewater is adequately renovated prior to irrigation, the characteristics of the effluent discharged from the aerated lagoon treatment system to the reclaimed wastewater storage reservoir not exceed:

5 Day Biochemical Oxygen Demand, 45 mg/L; and

Total Suspended Solids - 60 mg/L.

1.3 Permit Fee Calculations for Reclaimed Wastewater Discharge to Land

1.3.1 The characteristics of the reclaimed wastewater discharged from the storage reservoir and beneficially used for irrigation, for the purposes of permit fee calculations, the following discharge factors have been assumed:

5 Day Biochemical Oxygen Demand, 10 mg/L; and

Total Suspended Solids - 10 mg/L.

1.4 Authorized Works

The works authorized are: sewage collection system, sewage treatment plant concrete tankage for emergency containment, influent screen, flow equalization basin, pumping station, pressure forcemain to aerated lagoons, aerated lagoon treatment system, reclaimed wastewater storage reservoir sized to provide a minimum retention time of 60 days prior to spray irrigation, post storage chlorination, pressure forcemain to the golf course and related irrigation supply mains and sprinkler irrigation equipment, infiltration basin, and other related appurtenances, approximately as shown on the attached Site Plan A.

1.5 Source of Discharge

The source of discharge and sewage collection system services the Town of Oliver and surrounding area.

T.R. Forty, P.Eng. Assistant Regional Waste Manager

Date Issued: December 14, 1995 Amendment Date: (most recent)

OPFRATIONAL CERTIFICATE NO.: PE 13717

1.6 Location of Works

The location of the sewage collection, flow equalization basin and effluent pumping station is: Block 47 of District Lot 2450s, Similkameen Division of Yale District.

The location of the effluent aerated lagoon treatment facilities, reclaimed wastewater storage reservoir, chlorination and withdrawal facilities is: District Lot 763s, and Block B, District Lot 682s, Similkameen Division of Yale District. The location of the potential infiltration basin sites: Block K, Plan 1789 (Town Sand Pit) and Lot 2, Plan 5881 (Town Gravel Pit).

1.7 Location of Discharge

The location where reclaimed wastewater may be irrigated is described generally as Oliver and the surrounding area.

1.8 Irrigation Plan

Submit for review, and obtain written authorization from the Regional Waste Manager, an "Irrigation Plan" of all new areas of land to be irrigated prior to commencement of irrigation with reclaimed wastewater. Areas for effluent irrigation are as indicated in the Oliver Waste Management Plan and as indicated on Site Plan A.

GENERAL REQUIREMENTS

2.1 Maintenance of Works, Emergency Procedures and Noncompliance Reporting

Inspect the pollution control works regularly and maintain them in good working order. In the event of an emergency or any condition which prevents continuing operation of the approved method of pollution control or results in noncompliance with the terms and conditions of this Operational Certificate, immediately notify the Regional Waste Manager and take appropriate remedial action,

2.2 Bypasses

The discharge of effluent which has bypassed the designated treatment works is prohibited, unless the consent of the Regional Waste Manager is obtained and confirmed in writing.

Date Issued: December 14, 1995 Amendment Date: (most recent) T.R. Forty, P.Eng. Assistant Regional Waste Manager

2.3 **Process Modifications**

Notify the Regional Waste Manager, and his written consent obtained, prior to implementing changes to any process that may affect the quality and/or quantity of the discharge.

2.4 Alternate Water Supply

Provide alternate water supplies if any privately owned well is adversely affected by the land disposal scheme as determined by the Regional Waste Manager.

2.5 Plans - New Works

2.5.1 Plans of modifications and/or extensions to the existing works shall be signed and sealed by a Professional Engineer licensed to practise in the Province of British Columbia.

- 2.5.2 Copies of all "as-built" plans and drawings for the effluent treatment system, signed and sealed by a Professional Engineer licensed to practise in the Province of British Columbia, shall be submitted to the Regional Waste Manager on completion of construction.
- 2.5.3 Plans and specifications of any proposed new works, modifications or additions to the works authorized in this Operational Certificate, including the infiltration basin plans, and with the exception of the sewage collection system, shall be submitted to the Regional Waste Manager, and his written consent obtained before construction commences. The works shall be constructed in accordance with such plans.
- 2.5.4 Retain a copy of all "as-built", plans of modifications and/or extensions to the sewage collection system for perusal by the Regional Waste Manager, or his designate, upon request.
- 2.5.5 Plans for modifications of, and/or extensions to, the existing reclaimed wastewater irrigation system shall be approved by a person qualified in the design of irrigation systems.
- 2.5.6 Design and construct the irrigation works in accordance with best current agricultural practice and:

The "Pollution Control Guidelines for Municipal Effluent Application to Land", dated January 1983, and any amendments thereto, issued by the Ministry of Environment of British Columbia.

Date Issued: December 14, 1995 Amendment Date: (most recent) Page: 4 of 18

T.R. Forty, P.Eng. Assistant Regional Waste Manager

OPERATIONAL CERTIFICATE NO.: PE 13717

The "B.C. Sprinkler Irrigation Manual" 1989 issue, prepared by the B.C. Ministry of Agriculture and Fisheries.

The "Health and Safety Criteria for the Use of Reclaimed Wastewater", 1991, developed by the Ministry of Health and the Ministry of Environment.

3. <u>GENERAL REQUIREMENTS - ALL DISCHARGES</u>

3.1 Operation and Maintenance

Develop and maintain both an Operational and Maintenance Manual for the sewage collection, sewage treatment and reclaimed wastewater utilization. A copy of the Operational and Maintenance Manuals shall be retained at the treatment facility for inspection by the Regional Waste Manager or their designate.

3.2 Facility Classification

Maintain the wastewater treatment facility classification as authorized in Section 1.4 with the "British Columbia Water and Wastewater Operators Certification Program Society" (BCWWOCPS). The new aerated lagoon treatment facility is presently classified as a Level II facility.

3.3 Operator Certification

- 3.3.1 All operators in training (OIT) working at this Level II facility classified by the BCWWOCPS shall be required to successfully pass an OIT examination within three (3) months of commencement of employment at the facility. The OIT certificate shall be valid for fifteen (15) months from the date of issue. Prior to the expiry date of the OIT certificate, but not sooner than twelve (12) months from the date when the OIT commenced facility operation, the OIT shall successfully complete a Class I certification examination in order to continue to operate at the facility.
- 3.3.2 The facility is currently classified by the BCWWOCPS at Level II. Designate at least one operator to be the "Chief Operator" of the facility by December 1, 1996. The "Chief Operator" shall be certified at a Class II level, at a minimum.

After December 1, 1996, no person shall have "Direct Responsible Charge", as defined by the BCWWOCPS, of a municipal wastewater

Date lasued: December 14, 1995 Amendment Date: (most recent)

T.R. Forty, P.Eng. Assistant Regional Waste Manager treatment facility classified at Level II or higher unless they possess a valid operator's certificate not more than one level below the classification level of the facility. "Direct Responsible Charge" is the "Chief Operator" of the facility, the identifiable senior person who is in charge of the plant.

- 3.3.3 Should the facility be reclassified by the BCWWOCPS at Level III, designate a "Chief Operator", certified at a Class III level by December 1, 1998.
- 3.3.4 Should the facility be reclassified by the BCWWOCPS at Level IV, designate a "Chief Operator", certified at a Class IV level by December 1, 1998.

3.4 Water Conservation

Establish a water conservation program to encourage a reduction in the volume of domestic and industrial wastewaters discharged to the sewage collection system.

3.5 Sewage Collection System - Groundwater Infiltration, Inflow and Cross Connections

Inspect and maintain the sewage collection system works so as to minimize the possibility of cross connections between the storm sewer and the sanitary sewer systems, to minimize infiltration of groundwater, to minimize inflow of water from basement sump pumps and roof drains, and minimize exfiltration of the collected sewage from the sewage collection system to the ground.

3.6 Influent Wastes Bylaw

Subject to being declared a Sewage Control Area under Section 17 of the Waste Management Act, and in order to minimize the potential effect of heavy metals or other toxic materials in the effluent and/or sludge, prepare, implement and/or amend an Influent Wastes Bylaw, Building Bylaw, or other similar bylaws, to regulate the input of such wastes to the sewage collection system. Devices to process household putrescible waste for disposal to the sewage collection system shall be prohibited.

Contingency Plan

Prepare a Contingency Plan that will address the appropriate course of action to be taken in any particular preconceived emergency situation. The Contingency Plan shall include chlorine leaks and any potential point of concern in the collection, treatment and disposal systems. Attention is to be given to public

Date Issued: December 14, 1995 Amendment Date: (most recent) Page: 6 of 18

3.7

...

T.R. Forty, P.Eng. Assistant Regional Waste Manager

OPERATIONAL CERTIFICATE NO.: PE 13717

safety and the protection of the environment. The Contingency Plan is to be continually updated as necessary to reflect the current operation. A copy of the Contingency Plan shall be forwarded to the Regional Waste Manager on or before December 31, 1997.

3.8 Sludge Management Plan

The rationale of sludge management, including frequency of withdrawal of sludge from the sewage treatment plant and the location(s) used for disposal and/or utilization shall be developed into a Sludge Management Plan. The Sludge Management Plan shall be prepared and submitted to the Regional Waste Manager for approval on or before December 31, 1996.

-3.9 Odours

Should odours become objectionable, additional works shall be provided when so directed in writing by the Regional Waste Manager.

3.10 Fencing

Erect a fence around the sewage treatment facility, storage reservoir and such other areas as required by the Regional Waste Manager. The height and type of fencing shall meet the approval of the Regional Waste Manager.

3.11 Surface Water Diversionary Works

Surface water shall be intercepted and diverted away from the effluent treatment facilities to the greatest extent possible.

3.12 Signage

- 3.12.1 A suitable sign erected at the main entrance to the site shall have the appropriate emergency phone numbers for use by the general public and others.
- 3.12.2 Prominent "NO TRESPASSING", signs shall be erected around agricultural and silvicultural sites irrigated with reclaimed wastewater, warning persons of the possible health hazard during the irrigation season and advising that the water used for irrigation is NOT POTABLE. The wording shall be in language or symbols readily comprehensible by the general public. eg. "NO TRESPASSING - RECLAIMED WASTEWATER - DO NOT DRINK"

Date Issued: December 14, 1995 Amendment Date: (most recent)

T.R. Forty, P.Eng. Assistant Regional Waste Manager

4. <u>GENERAL REQUIREMENTS - EFFLUENT STORAGE RESERVOIR</u>

4.1 Leakage

Operate and maintain the reclaimed wastewater storage reservoir to minimize fluid leakage. Leakage shall not aggravate or produce soil or bedrock instability or erosion elsewhere or contaminate ground or surface water.

5. GENERAL REQUIREMENTS - EFFLUENT IRRIGATION

5.1 Disinfection - Chlorination

- 5.1.1 Adequate chlorination shall be maintained and provide not less than one hour's contact time at average flow rates in the reclaimed wastewater discharging from the chlorination facility to the irrigation system.
- 5.1.2 Reclaimed wastewater utilized for irrigation shall conform to the effluent irrigation guidelines developed by the B.C. Ministry of Health. Fecal coliforms shall not exceed 200 MPN per 100 mL for agricultural, silvicultural and low public use lands, or exceed 2.2 MPN per 100 mL for high public use lands.

5.2 Annual Irrigation

- 5.2.1 The authorized discharge period for irrigation is during the period March 15 to October 31, inclusive.
- 5.2.2 With the written authorization of the Regional Waste Manager, the irrigation schedule may be extended on a weekly basis beyond these limits. Any extension will be considered only upon receipt of a substantiated written request.

5.3 Buffer Zones

- 5.3.1 The requirement for formal buffer zones surrounding lands irrigated with reclaimed wastewater is no longer in effect, however, a buffer zone may be specified by the Regional Waste Manager.
- 5.3.2 Reclaimed wastewater applied by irrigation shall not be applied to the ground any closer than 15 metres from the edge of flowing streams or bodies of water.
- 5.3.3 There shall be no reclaimed wastewater irrigated within 30 metres of any well or inground reservoir for domestic supply. a

Date Issued: December 14, 1995 Amendment Date: (most recent) Page: 8 of 18

T.R. Forty, P.Eng. Assistant Regional Waste Manager

5.4 Surface Runoff

There shall be no surface runoff of irrigated reclaimed wastewater from the irrigated lands.

5.5 Surfacing Reclaimed Wastewater

Irrigation shall be managed in such a fashion as to preclude surfacing of irrigation tail water down slope of the point of irrigation.

5.6 Spray Irrigation Drift

The reclaimed wastewater irrigation system shall be managed in such a fashion as to preclude aerosol drift from leaving the irrigated lands.

5.7 Irrigation Rates

1. 1.

- 5.7.1 Irrigation rates shall not exceed the rates given in "B.C. Sprinkler Irrigation Manual", dated 1989, prepared by the B.C. Ministry of Agriculture and Fisheries.
- 5.7.2 Soils of the irrigated lands shall be monitored to prevent saturation, erosion, and instability.

5.8 Agricultural Products Lag Time

- 5.8.1 A three day lag time is required before uninspected livestock intended for human consumption are permitted on areas irrigated with reclaimed wastewater. No lag time is required if livestock are subjected to the federal meat inspection program.
- 5.8.2 A six day lag time is required before dairy cattle are permitted in areas irrigated with reclaimed wastewater.
- 5.8.3 A three day lag time, after irrigation has ceased, is required before a crop intended for animal feed is harvested.

T.R. Forty, P.Eng. Assistant Regional Waste Manager

Date issued: December 14, 1995 Amendment Date: (most recent) Page: 9 of 18

ODERATIONAL CERTIFICATE NO . DE 19717

6. MONITORING REQUIREMENTS

- 6.1 Influent Sampling Program (Equalization Basin)
 - 6.1.1 Install and maintain a suitable sampling facility at the equalization basin outlet, (S.E.A.M. site number E222152), and obtain a grab sample of the plant influent semi-annually (a proportional continuous sampler may be used).
 - 6.1.2 Obtain analyses of the influent sample for the following:

total phosphorus and ortho phosphorus, expressed as P in mg/L;

- 6.2 Effluent Sampling Program (Cell #3, prior to storage reservoir)
 - 6.2.1 Install and maintain a suitable sampling facility on the outlet of the aerated treatment lagoon, Cell #3, (S.E.A.M. site number E222151), and obtain a grab sample of the effluent before it is discharged to the storage reservoir, for analysis by a suitably accredited laboratory, a proportional continuous sampler may be used, provided that prior written approval has been obtained from the Regional Waste Manager.
 - 6.2.2 Obtain analyses of the effluent sample for the following:

total suspended solids (non-filterable residue), (monthly analysis), mg/L;

5-day biochemical oxygen demand, (monthly analysis), mg/L;

total phosphorus, ortho phosphorus and total dissolved phosphorus, (quarterly analysis during 1996, and semi-annually analysis, thereafter), all expressed as mg/L P; and

total nitrogen, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, and organic nitrogen, (quarterly analysis during 1996, and semiannually analysis thereafter), all expressed as mg/L N.

6.2.3 Occasional full chemical analysis of the main cations and anions and other characteristics may be required at the discretion of the Regional Waste Manager.

T.R. Forty, P.Eng. Assistant Regional Waste Manager

Date Issued: December 14, 1995 Amendment Date:

- 6.3 Effluent Irrigation Sampling Program (Chlorine Contact Chamber, prior to Irrigation)
 - 6.3.1 Install a suitable sampling facility after the chlorine contact chamber, prior to irrigating, (S.E.A.M. site number E222150) and obtain a grab sample of the reclaimed wastewater during the irrigation season.
 - 6.3.2 Obtain analyses of the sample, parameters and frequency as follows:

faecal coliforms, M.P.N./100ml, on a monthly basis;

total coliforms, M.P.N./100ml, on a monthly basis;

total phosphorus, mg/L, on a monthly basis;

total nitrogen, mg/L, on a monthly basis; and

- chlorine residual, mg/L, on a weekly basis.
- 6.3.3 Occasional full chemical analysis of the main cations and anions and other characteristics may be required at the discretion of the Regional Waste Manager.
- 6.4 Effluent Irrigation Monitoring Program
 - 6.4.1 Provide and maintain a suitable flow measuring device to measure total volume of reclaimed wastewater irrigated annually and record the areas where it is utilized.
 - 6.4.2 Provide and maintain a suitable flow measuring device to measure the amount of fresh water make-up from Okanagan River to the equalization basin in m³/day, and totalize this make up water volume on an annual basis in m³/year.
 - 6.4.3 Provide and maintain a suitable flow measuring device and record once per day the reclaimed wastewater volume irrigated over a 24-hour period. Record the flows for each calendar month and for each calendar year.
- 6.5 Storage Reservoir Level Monitoring Program
 - 6.5.1 Provide a suitable staff gauge or other similar device as approved by the Regional Waste Manager in the storage reservoir and take weekly measurements of the water level in the storage reservoir on a year round basis.

Date issued: December 14, 1995 Amendment Date: (most recent) T.R. Forty, P.Eng. Assistant Regional Waste Manager

6.6 Sampling and Analytical Requirements

- Proper care should be taken in sampling, storing and transporting the 6.6.1 samples to adequately control temperature and avoid contamination, breakage, etc.
- Occasional full chemical analysis of the main cations and anions and 6.6.2 other characteristics may be required at the discretion of the Regional Waste Manager.
- 6.6.3 Analyses are to be carried out in accordance with procedures described in the second edition of "A Laboratory Manual for the Chemical Analysis of Waters, Wastewaters, Sediments and Biological Materials, (March 1994 Permittee Edition)", or by suitable alternative procedures as authorized by the Regional Waste Manager.

The above manual may be purchased from Queens Printer Publications Centre, 2nd Floor, 563 Superior Street, Victoria, B.C., V8V 4R6, 1-800-663-6105. The manual may also be reviewed at any Environmental Protection Program Office.

- Sampling and flow measurement shall be carried out in accordance with 6.6.4 the procedures described in "Field Criteria for Sampling Effluents and Receiving Waters", April 1989, 17 pp., or by other suitable alternative procedures as authorized by the Regional Waste Manager.
- 6.6.5 The Permittee is required to follow the terms and conditions of the Quality Assurance Regulation (EQDA). Ten percent of the samples collected shall be duplicated to provide data quality assurance. Quality control information generated by the Permittee lab while analyzing parameters required by this Permit shall also be provided with the data required to be reported.

Sludge Sampling and Monitoring Program

Develop and maintain a record keeping system for measuring and recording the depth of sludge collecting in the lagoons and volume of sludge removed from the treatment lagoons during desludging operations, the location where the sludge was discharged, and the amount of sludge discharged at each location. The Regional Waste Manager is to be notified in writing at least two weeks prior to the commencement of desludging operations. Analysis of the sludge may be required by the Regional Waste Manager.

Date issued: December 14, 1995 Amendment Date:

6.7

يون ماري ماري

(most recent)

Danas 19 of 18

T.R. Forty, P.Eng. Assistant Regional Waste Manager

OPERATIONAL CERTIFICATE NO.: PE 13717
Groundwater Monitoring Program

A Groundwater Monitoring Program, shall be submitted to the Regional Waste Manager. The Groundwater Monitoring Program shall be designed by a Professional Engineer or a Hydrogeological Technologist licensed to practice in the Province of British Columbia, to establish with acceptable scientific accuracy, the groundwater flow pattern and nutrient removal capability of the soil to ensure reasonable notice of impending high phosphorus or nitrate levels that may adversely affect surface water, groundwater or domestic waterwells. The sampling, measurement frequency and analyses shall be conducted in accordance with the Groundwater Monitoring Program upon its written authorization by the Regional Waste Manager. The Groundwater Monitoring Program to be submitted to the Regional Waste Manager by December 31, 1997.

6.9 Soils Assessment Program

A ground assessment of any new areas to be irrigated, as shown in the "Irrigation Plan", shall be performed by a suitably qualified professional, using best current climate and soils data to substantiate that the land is capable of accepting reclaimed wastewater for irrigation purposes. This assessment is to include any suggested restrictions or recommendations that the suitably qualified professional deems necessary. This Soils Assessment shall be submitted to the Regional Waste Manager for review prior to the initial commencement of irrigation annually. Further review and ongoing soils assessments may be required by the Regional Waste Manager.

7. REPORTING

6.8

- 7.1 General Reporting
 - 7.1.1 Maintain the monitoring data required in Section 6 for inspection.
 - 7.1.2 The influent/effluent water quality analyses and flow data is to be submitted to the Regional Waste Manager such that they are received by the Regional Waste Manager within 30 days of the results being sent out by the testing agency.
 - 7.1.3 Monitoring data shall be submitted in an electronic and/or printed format satisfactory to the Regional Waste Manager.

Date Issued: December 14, 1995 Amendment Date: (most recent) T.R. Forty, P.Eng. Assistant Regional Waste Manager

7.2 Annual Reporting

- 7.2.1 Submit an Annual Report which includes a summary of the results of all sampling and monitoring programs as specified in this permit, data interpretation and trend analyses by a suitably qualified professional.
- 7.2.2 This report is to be in a format which is suitable for review by the public and/or other government agencies.
- 7.2.3 The first report is due on or before 60 days of the end of a calendar year for that year's monitoring. Raw data are to be attached as appendices to the report.
- 7.2.4 Maintain and submit records of the following as a part of the annual report:
 - 7.2.4.1 Records of reclaimed wastewater balance, that is, the flows to and from the storage reservoir. This balance, must also include the freshwater make-up.
 - 7.2.4.2 Records of the duration, intensity, property owner, acreage, location, and type of reclaimed wastewater irrigation.
 - 7.2.4.3 Records of efforts to reduce infiltration, inflow and cross connections for inspection by the Regional Waste Manager or his designate.
 - 7.2.4.4 Records of efforts to administer the Influent Wastes By-law(s) for inspection by the Regional Waste Manager or his designate. Include as an attachment, any amendments to the Influent Wastes By-law(s) that have been made during the past year.
 - 7.2.4.5 Copy of the Contingency Plan.
 - 7.2.4.6 Copy of the Sludge Management Plan.
 - 7.2.4.7 Copy of the Annual Flow Summaries.
 - 7.2.4.8 Copy of the Annual Irrigation Summaries.

T.R. Forty, P.Eng. Assistant Regional Waste Manager

CONTINUE OF PTIFICATE NO.: PE 13717

Date Issued: December 14, 1995 Amendment Date: (most recent)

Environmental Protection

APPENDIX A

Requirements of Reclaimed Wastewater Users

The holder of this Operational Certificate (The reclaimed wastewater supplier) shall be responsible for ensuring that the contractual agreement with the Reclaimed Wastewater User is in accordance with the Operational Certificate. A copy of this Appendix is to be provided to each user prior to the commencement of irrigation <u>EACH YEAR</u>.

1 <u>GENERAL REQUIREMENTS</u>

- **1.1** Plans New Works
 - 1.1.1 Plans for modifications and/or extensions to the existing reclaimed wastewater irrigation system shall be approved by a person qualified in the design of irrigation systems.
 - 1.1.2 Design and construct the irrigation works in accordance with best current agricultural practice and the "Pollution Control Guidelines for Municipal Effluent Application to Land", dated January 1983, and any amendments thereto, issued by the Ministry of Environment of British Columbia, and also in accordance with the "B.C. Sprinkler Irrigation Manual", dated 1989, prepared by the B.C. Ministry of Agriculture and Fisheries.

1.2 Construction Criteria

- 1.2.1 All reclaimed water user valves, shall be of a type or secured in a manner that permits operation by only personnel authorized by each wastewater user. All piping, valves and outlets should be marked to differentiate reclaimed wastewater from domestic water. All reclaimed wastewater controllers, valves, etc., shall be affixed with reclaimed wastewater warning signs.
- 1.2.2 Use or installation of hose-bibbs on any irrigation system presently operating, or designated to operate with reclaimed wastewater, regardless of the hose-bibb construction or identification, is not permitted.
- 1.2.3 There shall be at least a 3 metre horizontal and a 0.3 metre vertical separation (with domestic water pipeline above the reclaimed water pipeline) between all pipelines transporting reclaimed water and those transporting domestic water.

Date Issued: December 14, 1995 Amendment Date: (most recent) T.R. Forty, P.Eng. Assistant Regional Waste Manager 1.2.4 There shall be no connection between a potable water supply, irrigation water or industrial well, and piping containing reclaimed wastewater, except through an air gap separation or reduced pressure principle device.

1.3 Fencing

The Reclaimed Wastewater User MAY be required by the Regional Waste Manager to erect a fence around the disposal area to restrict public access. The height and type of fencing shall meet the approval of the Regional Waste Manager.

1.4 Signage

- 1.4.1 Prominent "NO TRESPASSING", signs shall be erected around agricultural and silvicultural sites irrigated with reclaimed wastewater, warning persons of the possible health hazard during the irrigation season and advising that the water used for irrigation is NOT POTABLE. The wording shall be in language or symbols readily comprehensible by the general public. eg. "NO TRESPASSING - RECLAIMED WASTEWATER - DO NOT DRINK"
- 1.4.2 Warning signs shall be posted in sufficient numbers and size and at strategic locations to advise the public that reclaimed water is being used. Additional signage may be required as directed by the Regional Waste Manager.

2 GENERAL REQUIREMENTS - RECLAIMED WASTEWATER IRRIGATION

2.1 Buffer Zones

- 2.1.1 The requirement for formal buffer zones surrounding lands irrigated with reclaimed wastewater is no longer in effect, however, a buffer zone may be specified by the Regional Waste Manager.
- 2.1.2 Reclaimed wastewater applied by irrigation shall not be applied to the ground any closer than 15 metres from the edge of flowing streams or bodies of water.
- 2.1.3 There shall be no reclaimed wastewater irrigated within 30 metres of any well or inground reservoir for domestic supply.

Date issued: December 14, 1995 Amendment Date: (most recent) Page: 16 of 18 T.R. Forty, P.Eng. Assistant Regional Waste Manager

OPERATIONAL CERTIFICATE NO.: PE 13717

2.2 Surface Runoff

- 2.2.1 There shall be no surface runoff of irrigated reclaimed wastewater from the irrigated lands.
- 2.2.2 The maximum ground slope shall not exceed 20% without the written consent of the Regional Waste Manager.
- 2.3 Surfacing Reclaimed Wastewater
 - 2.3.1 Irrigation shall be managed in such a fashion as to preclude surfacing of irrigation tail water down slope of the point of irrigation.
 - 2.3.2 Irrigation shall be managed as to prevent ponding.

Spray Irrigation Drift

2.4

- 2.4.1 Reclaimed wastewater shall be confined to the area designated and approved for reclamation. The reclaimed wastewater irrigation system shall be managed in such a fashion as to prevent aerosol drift from leaving the irrigated lands.
- 2.4.2 Precautions shall be taken to ensure that reclaimed water will not have contact with any facility or area not designated for reclamation, such as passing vehicles, buildings, domestic water facilities, fruit and vegetable gardens, or food handling facilities.
- 2.4.3 Drinking water facilities shall be protected from direct or wind blown reclaimed wastewater spray.

2.5 Irrigation Rates

- 2.5.1 Irrigation rates shall not exceed the rates given in "B.C. Sprinkler Irrigation Manual", dated 1989, prepared by the B.C. Ministry of Agriculture and Fisheries.
- 2.5.2 Soils of the irrigated lands shall be monitored periodically or as otherwise directed by the Regional Waste Manager or the Town of Oliver, to prevent saturation, erosion, and instability.

T.R. Forty, P.Eng. Assistant Regional Waste Manager

Date Issued: December 14, 1995 Amendment Date: (most recent)

ENV PONMENTAL PROTECTION DIVISION

Province of British Columbia Ministry of Environment, Lands and Parks

2.6 Agricultural Products Lag Time

- 2.6.1 A three day lag time is required before uninspected livestock intended for human consumption are permitted on areas irrigated with reclaimed wastewater. No lag time is required if livestock are subjected to the federal meat inspection program.
- 2.6.2 A six day lag time is required before dairy cattle are permitted in areas irrigated with reclaimed wastewater.
- 2.6.3 A three day lag time, after irrigation has ceased, is required before a crop intended for animal feed is harvested.

2.7 Insect and Vector Control

Adequate measures shall be taken to prevent the breeding of insects and other vectors of health significance, and the creation of odors, slimes or unsightly deposits.

- 2.8 Irrigation of Public Areas
 - 2.8.1 Irrigation on golf courses or cemeteries shall only be practised when the public are not present.
 - 2.8.2 Golf score cards shall indicate that reclaimed wastewater is used for irrigation on the golf course lands.

Date issued: December 14, 1995 Amendment Date: (most recent)

T.R. Forty, P.Eng. Assistant Regional Waste Manager

APPENDIX G

Effluent Storage Reservoir - Volume Calibration Curve

R:\Clients\300-399\306\306-084\04 Design\Effluent Storage Reservoir Calculation.xlsx

Reservoir	Elevation above	Measured Volume	Calculated	% Difference from
Elevation (m)	439m (m)	(m ³)	Volume (m ³)	Measured
439	0	0	-374	N/A
440	1	32000	32360	1%
441	2	73300	73945	1%
442	3	124000	123758	0%
443	4	181600	181174	0%
444	5	246000	245568	0%
445	6	316800	316315	0%
446	7	391000	392791	0%
447	8	475200	474370	0%

Town of Oliver - Effluent Storage Reservoir - Volume Capacity